Chromato-mas-spectroscopic study of the chemical composition of growing in ukraine Tanacetum corymbosum (L.) Sch. Bip. populations


  • O. I. Panasenko Zaporizhzhia State Medical University, Ukraine,
  • I. I. Aksonova Zaporizhzhia State Medical University, Ukraine,
  • V. I. Mozul Zaporizhzhia State Medical University, Ukraine,
  • O. M. Denysenko Zaporizhzhia State Medical University, Ukraine,
  • Ye. O. Karpun Zaporizhzhia State Medical University, Ukraine,
  • O. A. Lisunova Zaporizhzhia State Medical University, Ukraine,



Tanacetum, gas chromatography, plant bioactive compounds



The aim of the work was the chromato-mas-spectroscopic studyof the chemical composition of Tanacetum corymbosum (L.) Sch. Bip. and the identification of further prospects for the use of raw materials of this plant in medical and pharmaceutical practice.

Materials and methods. The object of the study was the grass of Tanacetum corymbosum (L.) Sch. Bip., which was collected in Zaporizhzhia in July 2019. The method of high-performance gas chromatography on the device Agilent 7890B GC System (Agilent, Santa Clara, CA, USA) with mass spectrometry detector Agilent 5977 BGC/MSD (Agilent, Santa Clara, CA, USA) was used to determine the chemical composition of Tanacetum corymbosum (L.) Sch. Bip. The NIST14 mass spectrum library was used to identify the components.

Results. There were 42 components, which were contained in the grass of Tanacetum corymbosum (L.) Sch. Bip. (2 are isomers). They belong to different classes of biologically active substances. There were: terpenoids (39.53 %), heterocyclic compounds (34.75 %), fatty acids and their derivatives (9.78 %), hydrocarbons (7.23 %), alcohols (5.61 %), aldehydes and ketones (0.74 %).

2H-Cyclohepta[b]furan-2-one,3,3a,4,7,8,8a-hexahydro-7-methyl-3-methylene-6-(3-oxobutyl)-, [3aR-(3a.alpha.,7.beta.,8a.alpha.)]- was constituted the main part among all found compounds – 24.46 %, (+)-2-bornanone (11.85 %) and bicyclo[3.1.1]hept-2-en-6-ol, 2,7,7-trimethyl-, acetate, [1S-(1.alpha.,5.alpha.,6.beta.)]- (16.27 %) are next.

Also, n-tetracosanol-1 and 4H-1-benzopyran-4-one, 2-(3,4-dimethoxyphenyl) -5-hydroxy-3,6,7-trimethoxy- were presented in quantity 4.78 % and 4.48 % respectively.

Considering all of the above and information, which was obtained from publications of Ukrainian and foreign authors, further prospects for the use of Tanacetum corymbosum (L.) Sch. Bip.  in medical and pharmaceutical practice can be considered.

Conclusions. The chemical composition of grass of Tanacetum corymbosum (L.) Sch. Bip. was established by method of gas chromatography with mass spectrometry detector. 42 components were identified (2 in the isomeric state). They belong to different groups of biologically active substances: terpenoids, heterocyclic compounds, fatty acids and their derivatives, hydrocarbons, alcohols, aldehydes and ketones. Considering the biological properties of the main active ingredients, the raw materials of Tanacetum corymbosum (L.) Sch. Bip. can be considered as a promising source of antioxidant, antimicrobial and anti-inflammatory drugs.


Hordiei, K. R., Gontova, T. M., Serbin, A. G., Kotov, A. G., & Kotova, E. E. (2019). Vyvchennia fenolnykh rechovyn u travi maruny divochoi metodom tonkosharovoi khromatohrafii ta vysokoefektyvnoi ridynnoi khromatohrafii [Study of phenolic compounds in the Feverfew Herb by TLC and HPLC methods]. Ukrainskyi biofarmatsevtychnyi zhurnal, (3), 64-70. [in Ukrainian].

State Enterprise Ukrainian Scientific Pharmacopoeial Center of Medicines Quality. (2008, February 1). Derzhavna Farmakopeia Ukrainy. Dopovnennia 2 [The State Pharmacopoeia of Ukraine] (1st ed., Suppl. 1). Kharkiv: Naukovo-ekspertnyi farmakopeinyi tsentr. [in Ukrainian].

Amudha, P., Jayalakshmi, M., Pushpabharathi, N., & Vani­tha, V. (2018). Identification of bioactive components in Enhalus acoroides seagrass extract by gas chromatography–mass spectro­metry. Asian Journal of Pharmaceutical and Clinical Research, 11(10), 313-317.

Borah, S., Sarkar, P., & Sharma, H. K. (2020). Chemical profiling, free radical scavenging and anti-acetylcholinesterase activities of essential oil from curcuma caesia of Arunachal Pradesh, India. Pharmacognosy Research, 12(1), 76-84.

Jiang, S. C., Ge, S. B., & Peng, W. (2018). Molecules and functions of rosewood: Dalbergia Stevenson. Arabian Journal of Chemistry, 11(6), 782-792.

Ciocarlan, N., Izverscaia, T., & Ghendov, V. (2018). Spontaneous medicinal plants research and ex-situ conservation in the national botanical garden (institute), Republic of Moldova. Journal of Botany, (1), 50-56.

Eyol, P. C., Sarikahya, N., Karakoc, O. C., Gokce, A., Demirci, F., Kirmizig-ul, S., & Goren, N. (2017). Fatty Acid Composition and Biological Activities of Tanacetum zahlbruckneri (Náb.) Grierson Growing in Turkey. Records of Natural Products, 11(4), 401-405.

U.S. Patent No. US9226950B2. (n.d.). Washington, DC: U.S. Patent and Trademark Office.

Iamonico, D. (2018). Notes about Tanacetum corymbosum s. l. (Asteraceae). Collectanea Botanica, 37, e013.

Ivănescu, B., Tuchiluș, C., Corciovă, A., Lungu, C. Mihai, C. T., Gheldiu, A. -M., & Vlase, L. (2018). Antioxidant, antimicrobial and cytotoxic activity of Tanacetum vulgare, Tanacetum corymbosum and Tanacetum macrophyllum extracts. Farmacia, 66(2), 282-288.

Magierowicz, K., Górska-Drabik, E., & Sempruch, C. (2020). The effect of Tanacetum vulgare essential oil and its main components on some ecological and physiological parameters of Acrobasis advenella (Zinck.) (Lepidoptera: Pyralidae). Pesticide Bioche­mistry and Physiology, 162. 105-112.

Maleki Lajayer, H., Norouzi, R., Shahi-Gharahlar, A. (2020). Essential oil components, phenolic content and antioxidant activity of Anthriscus cerefolium and Anthriscus sylvestris from Iran, Journal of horticulture and postharvest research, 3(2), 355-366.

Bouzekri, O., El Gamouz, S., Mostafa El Idrissi, Aziz Bouymajane, M’barek Choukrad (2020). Chemical composition, antimicrobial and antioxidant activities of the essential oil of Rosmarinus Officinalis L, cultivated in Fes-Meknes region, RHAZES: Green and Applied Chemistry, 8, 1-9.

Prabhu, K., Rao, M. R. K., Penna Balakrishna, A. K., Bharath, A. K., Vishal, S. K., Aparna Ravi, Kalaivannan, J., & Shruti Dinakar. (2020). The gas chromatography–mass spectrometry study of one Ayurvedic Rasayana, Sonitha Amritha Rasayanam. Drug Invention Today, 14(5), 707-711.

Compound Summary Parthenium. (n.d.). PubChem: [Web site].

Rezaei, F., Jamei, R., Heidari, R. (2017). Evaluation of the Phytochemical and Antioxidant Potential of Aerial Parts of Iranian Tanacetum parthenium. Pharmaceutical Sciences, 23, 136-142.

Savcı, A., Alan, Y., Koçpınar, E. F., Kürşat, M., Topdemir, S., Karataş, M., & Çakmak, B. (2019). Tanacetum kotschyi (Boiss.) Grierson ve Tanacetum tomentellum (Boiss.) Grierson Ekstraktlarının Fenolik Madde İçeriği ve Biyolojik Aktiviteleri. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 14, 112-126.

Sivakumar, C., & Jeganathan, K. (2018). Phytochemical profiling of cat whisker’s (Orthosiphon stamineus) tea leaves extract. Journal of Pharmacognosy and Phytochemistry, 7(6), 1396-1402.

Kovats – trans-chrysanthenyl acetate. The pherobase Web site.

The Plant List (TPL). (2013).

Vilhelmova, N., Simeonova, L., Nikolova, N., Pavlova, E., Gospodinova, Z., Antov, G., Galabov, A. & Nikolova I. (2020). Antiviral, Cytotoxic and Antioxidant Effects of Tanacetum Vulgare L. Crude Extract In Vitro. Folia Medica, 62(1), 172-179.

How to Cite

Panasenko OI, Aksonova II, Mozul VI, Denysenko OM, Karpun YO, Lisunova OA. Chromato-mas-spectroscopic study of the chemical composition of growing in ukraine Tanacetum corymbosum (L.) Sch. Bip. populations. Current issues in pharmacy and medicine: science and practice [Internet]. 2020Jul.3 [cited 2024Feb.26];13(2). Available from:



Original research