Synthesis and antitrypanosomal activity investigation of 5-alkyl-2-methylidenhydrazono-4-thiazolidinones with a 6-arylimidazo[2,1-b]thiadiazole fragment in the molecules
DOI:
https://doi.org/10.14739/2409-2932.2025.3.339291Keywords:
2-hydrazono-4-thiazolidinones, 6-arylimidazo[2,1-b][1,3,4]thiadiazoles, heterocyclization reaction, spectral data, antitrypanosomal activityAbstract
The aim of work: to synthesize 5-alkyl-substituted 2-hydrazono-4-thiazolidinones with a 6-arylimidazo[2,1-b][1,3,4]thiadiazole fragment in the molecules and to study the antitrypanosomal activity of the synthesized compounds.
Materials and methods. Organic synthesis, NMR spectroscopy, elemental analysis, and pharmacological screening were performed.
Results. A convenient and effective method for the formation of a 4-thiazolidinone ring is the [2+3]-cyclocondensation reaction of S,N-binucleophiles with different equivalents of the dielectrophilic synthon [C2]2+. Following the above concept, we obtained a series of targeted 5-alkyl-substituted 2-methylidenehydrazino-4-thiazolidinones with a 6-arylimidazo[2,1-b][1,3,4]thiadiazole fragment in molecules 6a–e and 7a–b by the interaction of N1-(6-arylimidazo[2,1-b][1,3,4]thiadiazol-5-ylmethylidene)-thiosemicarbazones 5a–c with α-halocarboxylic (monochloroacetic, 2-bromopropionic, 2-bromobutanoic) acids or α-bromo-γ-butyrolactone in acetic acid and the presence of sodium acetate. The structure of the synthesized compounds was confirmed by elemental analysis and NMR spectroscopy.
Conclusions. The results of in vitro screening of antitrypanosomal activity against Trypanosoma brucei gambiense (TBG) allowed us to identify two highly active compounds 6c and 7b, which exhibited essential trypanocidal effect with IC50 values of 3.7 µM and 3.2 µM, respectively.
References
Rocha-Roa C, Molina D, Cardona N. A Perspective on Thiazolidinone Scaffold Development as a New Therapeutic Strategy for Toxoplasmosis. Front Cell Infect Microbiol. 2018;8:360. doi: https://doi.org/10.3389/fcimb.2018.00360
Mech D, Kurowska A, Trotsko N. The Bioactivity of Thiazolidin-4-Ones: A Short Review of the Most Recent Studies. Int J Mol Sci. 2021;22(21):11533. doi: https://doi.org/10.3390/ijms222111533
Moreira DR, Leite AC, Cardoso MV, Srivastava RM, Hernandes MZ, Rabello MM, et al. Structural design, synthesis and structure-activity relationships of thiazolidinones with enhanced anti-Trypanosoma cruzi activity. ChemMedChem. 2014;9(1):177-88. doi: https://doi.org/10.1002/cmdc.201300354
de Oliveira Filho GB, de Oliveira Cardoso MV, Espíndola JW, Ferreira LF, de Simone CA, Ferreira RS, et al. Structural design, synthesis and pharmacological evaluation of 4-thiazolidinones against Trypanosoma cruzi. Bioorg Med Chem. 2015;23(23):7478-86. doi: https://doi.org/10.1016/j.bmc.2015.10.048
Yang B, Si H, Zhai H. QSAR studies on the IC50 of a class of thiazolidinone/thiazolide based hybrids as antitrypanosomal agents. Lett Drug Des Discov. 2021;18(4):406-15. doi: https://doi.org/10.2174/1570180817999201102200015
Smith TK, Young BL, Denton H, Hughes DL, Wagner GK. First small molecular inhibitors of T. brucei dolicholphosphate mannose synthase (DPMS), a validated drug target in African sleeping sickness. Bioorg Med Chem Lett. 2009;19(6):1749-52. doi: https://doi.org/10.1016/j.bmcl.2009.01.083
Fujii N, Mallari JP, Hansell EJ, Mackey Z, Doyle P, Zhou YM, et al. Discovery of potent thiosemicarbazone inhibitors of rhodesain and cruzain. Bioorg Med Chem Lett. 2005;15(1):121-3. doi: https://doi.org/10.1016/j.bmcl.2004.10.023
Greenbaum DC, Mackey Z, Hansell E, Doyle P, Gut J, Caffrey CR, et al. Synthesis and structure-activity relationships of parasiticidal thiosemicarbazone cysteine protease inhibitors against Plasmodium falciparum, Trypanosoma brucei, and Trypanosoma cruzi. J Med Chem. 2004;47(12):3212-9. doi: https://doi.org/10.1021/jm030549j
Kumar S, Gopalakrishnan V, Hegde M, Rana V, Dhepe SS, Ramareddy SA, et al. Synthesis and antiproliferative activity of imidazo[2,1-b][1,3,4]thiadiazole derivatives. Bioorg Med Chem Lett. 2014;24(19):4682-8. doi: https://doi.org/10.1016/j.bmcl.2014.08.032
Avarru SP, Noolvi MN, More UA, Chakraborty S, Dash A, Aminabhavi TM, et al. Synthesis and anticancer activity of thiadiazole containing thiourea, benzothiazole and imidazo[2,1-b][1,3,4]thiadiazole scaffolds. Med Chem. 2021;17(7):750-65. doi: https://doi.org/10.2174/1573406416666200519085626
Palkar MB, Noolvi MN, Maddi VS, Ghatole M, Nargund LG. Synthesis, spectral studies and biological evaluation of a novel series of 2-substituted-5,6-diarylsubstituted imidazo(2,1-b)-1,3,4-thiadiazole derivatives as possible anti-tubercular agents. Med Chem Res. 2012;21:1313-21. doi: https://doi.org/10.1007/s00044-011-9646-9
Patel HM, Noolvi MN, Sethi NS, Gadad AK, Cameotra SS. Synthesis and antitubercular evaluation of imidazo[2,1-b][1,3,4]thiadiazole derivatives. Arab J Chem. 2017; 10(1):S996-S1002. doi: https://doi.org/10.1016/j.arabjc.2013.01.001
Chandrakantha B, Isloor AM, Shetty P, Fun HK, Hegde G. Synthesis and biological evaluation of novel substituted 1,3,4-thiadiazole and 2,6-diarylsubstituted imidazo[2,1-b][1,3,4]thiadiazole derivatives. Eur J Med Chem. 2014;71:316-23. doi: https://doi.org/10.1016/j.ejmech.2013.10.056
Dagli M, Er M, Karakurt T, Onanan A, Alici H, Tahtaci H. Synthesis, characterization, antimicrobial evaluation, and computational investigation of substituted imidazo[2,1-b][1,3,4]thiadiazole derivatives. ChemistrySelect. 2020;5(38):11753-63. doi: https://doi.org/10.1002/slct.202002821
Yan Guo F, Ji Zheng C, Wang M, Ai J, Ying Han L, Yang L, et al. Synthesis and Antimicrobial Activity Evaluation of Imidazole-Fused Imidazo[2,1-b][1,3,4]thiadiazole Analogues. ChemMedChem. 2021;16(15):2354-65. doi: https://doi.org/10.1002/cmdc.202100122
Karki SS, Rana V, Sivan RU, Kumar S, Renuka V, Ramareddy SA, et al. Synthesis and anti-inflammatory activity of some imidazo[2,1-b][1,3,4]-thiadiazole derivatives. Acta Pol Pharm. 2015;72(5):931-6.
Noolvi MN, Patel HM, Kamboj S, Kaur A, Mann V. 2,6-Disubstituted imidazo[2,1-b][1,3,4]thiadiazoles: Search for anticancer agents. Eur J Med Chem. 2012;56:56-69. doi: https://doi.org/10.1016/j.ejmech.2012.08.012
Räz B, Iten M, Grether-Bühler Y, Kaminsky R, Brun R. The Alamar Blue assay to determine drug sensitivity of African trypanosomes (T.b. rhodesiense and T.b. gambiense) in vitro. Acta Trop. 1997;68(2):139-47. doi: https://doi.org/10.1016/s0001-706x(97)00079-x
Lutje V, Seixas J, Kennedy A. Chemotherapy for second-stage human African trypanosomiasis. Cochrane Database Syst Rev. 2013;2013(6):CD006201. doi: https://doi.org/10.1002/14651858.CD006201.pub3
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 M. I. Lelyukh, I. H. Chaban, A. A. Savchenko, O. Y. Komarytsya, T. I. Chaban

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
