Research on the pharmacological potential of 1-alkyl derivatives of 3,5-dimethyl-4-((4-nitrobenzylidene)amino)-1,2,4-triazolium bromide
DOI:
https://doi.org/10.14739/2409-2932.2024.3.311769Keywords:
4-amino-1,2,4-triazole, design, toxicity, ADME analysis, molecular modelingAbstract
The heterocyclic system of 1,2,4-triazole and its derivatives is one of the leaders in the development of highly promising biologically active compounds. The peculiarities of the chemical structure of the derivatives of this heterocycle provide a wide range of possibilities for chemical transformations that allow to obtain really effective drugs. The involvement of several substituents in chemical transformations simultaneously, which have the properties of highly reactive centers, additionally creates favorable conditions for the formation of rational ways to create a biologically active compound. Amino-, mercapto- or hydroxogroups often play the role of such groups in chemistry. The use of these groups as substituents of 1,2,4-triazole synthon provides multifaceted opportunities for directed chemical transformation. The ability of such structural fragments to form chemical interactions and bonds with biological targets has an additional positive effect in the sense of their involvement in chemical transformations on the way to the targeted production of a biologically active substance. Thus, the combination of a heterocyclic structure with a highly reactive chemical center is endowed with theoretically sound and practically significant meaning.
The aim of the work is to preliminary determine the potential for creating a biologically active substance with antifungal action based on 1-alkyl derivatives of 3,5-dimethy-l-4-((4-nitrobenzylidene)amino)-1,2,4-triazolium bromide.
Materials and methods. The toxicity of the studied compounds has been predicted using the TEST program (Toxicity Estimation Software Tool), which allowed to determine the predictive level of acute toxicity, ecotoxicity and mutagenicity. The physicochemical and pharmacokinetic parameters have been predicted, and the drug-like properties and availability of the investigated substances have been assessed using the online resource SwissADME. The determination of the most favorable spatial configuration of the ligand relative to the active site of the protein and the assessment of the strength of their interaction have been realized using the computational method of molecular docking. The ligands have been prepared using MarvinSketch 6.3.0, HyperChem 8 and AutoDock Tools-1.5.6 software. The preparation of the model enzyme has been based on the use of Discovery Studio 4.0 and AutoDock Tools-1.5.6. The practical implementation of flexible molecular docking has been carried out using the software tools of the AutoDock/Vina platform.
Results. In the process of step-by-step prescreening of the formed structures of a number of 1-alkyl derivatives of 3,5-dimethyl-4-((4-nitrobenzylidene)amino)-1,2,4-triazolium bromide, a number of qualitative and quantitative indicators related to the physicochemical characteristics and pharmacokinetic parameters of the studied substances have been obtained. According to the results of the first stage of research, the group of substances under consideration can be predictively considered low-toxic, but with a high risk of mutagenic properties. The next stage of the work, which involved the analysis of physicochemical parameters, pharmacokinetic parameters, general drug-like properties and bioavailability, allowed us to identify 1-alkyl derivatives of 3,5-dimethyl-4-((4-nitrobenzylidene)amino)-1,2,4-triazolium bromide as substances with a rather positive pharmacological profile. The final stage in the form of molecular docking of the structure of the studied compounds to the active site of lanosterol 14α-demethylase allowed us to determine the nature of the chemical interaction and the type of amino acid residues that may be involved in the antifungal properties of the key ligands. The analysis of the docking results allows us to determine the privileged nature of the nonyl substituent at the first Nitrogen atom of the 1,2,4-triazole synthon in the structure of the presented series of compounds for the formation of antifungal properties.
Conclusions. The general prospects for the creation of a biologically active substance with antifungal properties using 1-alkyl derivatives of 3,5-dimethyl-4-((4-nitrobenzylidene)amino)-1,2,4-triazolium bromide look quite realistic. Particular attention should be paid to 3,5-dimethyl-1-nonyl-4-((4-nitrobenzylidene)amino)-1,2,4-triazolium bromide as a substance with significant potential for antifungal properties, which allows us to recommend this compound for further more constructive and extended in vitro and in vivo studies.
References
Abdelli A, Azzouni S, Plais R, Gaucher A, Efrit ML, Prim D. Recent advances in the chemistry of 1,2,4-triazoles: Synthesis, reactivity and biological activities. Tetrahedron Letters. 2021;86:153518. doi: https://doi.org/10.1016/j.tetlet.2021.153518
Dai J, Tian S, Yang X, Liu Z. Synthesis methods of 1,2,3-/1,2,4-triazoles: A review. Front Chem. 2022;10:891484. doi: https://doi.org/10.3389/fchem.2022.891484
Zarenezhad E, Farjam M, Iraji A. Synthesis and biological activity of pyrimidines-containing hybrids: focusing on pharmacological application. J Mol Struct. 2021:1230. doi: https://doi.org/10.1016/j.molstruc.2020.129833
Slivka MV, Korol NI, Fizer MM. Fused bicyclic 1,2,4-triazoles with one extra sulfur atom: Synthesis, properties, and biological activity. J Heterocyclic Chem. 2020:1-19. doi: https://doi.org/10.1002/jhet.4044
Shcherbyna R, Panasenko O, Polonets O, Nedorezaniuk N, Duchenko M. Synthesis, antimicrobial and antifungal activity of ylidenhydrazides of 2-((4-R-5-R1-4Н-1,2,4-triazol-3-yl)thio)acetaldehydes. Ankara Universitesi Eczacilik Fakultesi Dergisi. 2021;45(3):504-14. doi: https://doi.org/10.33483/jfpau.939418
Samelyuk YG, Kaplaushenko AG. Synthesis of 3-alkylthio(sulfo)-1,2,4-triazoles, containing methoxyphenyl substituents at C5atoms, their antipyretic activity, propensity to adsorption and acute toxicity. Journal of chemical and pharmaceutical research. 2014;6(5):1117-21.
Gotsulya A, Zaika Y, Brytanova T. Synthesis, properties and biological potential some condensed derivatives 1,2,4-triazole. Ankara Universitesi Eczacilik Fakultesi Dergisi. 2022;46(2):308-21. doi: https://doi.org/10.33483/ jfpau.971602
Malani AH, Makwana AH, Makwana HR. A brief review article: Various synthesis and therapeutic importance of 1,2,4-triazole and its derivatives. Mor. J. Chem. 2017;5(1):41-58.
Ogloblina MV, Bushueva IV, Martynyshyn VP, Parchenko VV, Soloviov SO, Gladisheva SA. [Development of industrial production technology with determination of the quality of a soft medicine "Vetmikoderm" for veterinary]. Farmatsevtychnyi zhurnal. 2023;(6):83-93. Ukrainian. doi: https://doi.org/10.32352/0367-3057.6.23.06
Šermukšnytė A, Kantminienė K, Jonuškienė I, Tumosienė I, Petrikaitė V. The effect of 1,2,4-triazole-3-thiol derivatives bearing hydrazone moiety on cancer cell migration and growth of melanoma, breast, and pancreatic cancer spheroids. Pharmaceuticals. 2022;15(8):1026. doi: https://doi.org/10.3390/ph15081026
Grytsai O, Valiashko O, Penco-Campillo M, Dufies M, Hagege A, Demange L, et al. Synthesis and biological evaluation of 3-amino-1,2,4-triazole derivatives as potential anticancer compounds. Bioorg Chem. 2020;104:104271. doi: https://doi.org/10.1016/j.bioorg.2020.104271
Safonov AA. Method of synthesis novel N'-substituted-2-((5-(thiophen-2-ylmethyl)-4H-1,2,4-triazol-3-yl)thio)acetohydrazides. Ankara Universitesi Eczacilik Fakultesi Dergisi. 2020;44(2):242-52. doi: https://doi.org/10.33483/jfpau.580011
Karpenko Y, Hunchak Y, Gutyj B, Hunchak A, Parchenko M, Parchenko V. Advanced research for physico-chemical properties and parameters of toxicity piperazinium 2-((5-(furan-2-yl)-4-phenyl-4H-1,2,4-triazol-3-yl)thio)acetate. ScienceRise: Pharmaceutical Science. 2022;2(36):18-25. doi: https://doi.org/10.15587/2519-4852.2022.255848
Gotsulya A. Synthesis and antiradical activity of alkyl derivatives of 5-(5-methyl-1H-pyrazol-3-yl)-4-phenyl-4H-1,2,4-triazole-3-thiol. Ankara Universitesi Eczacilik Fakultesi Dergisi. 2020;44(2):211-219. doi: https://doi.org/10.33483/jfpau.616116
Fedotov SO, Hotsulia АS. Synthesis and properties of S-derivatives of 4-amino-5-(5-methylpyrazol-3-yl)-1,2,4-triazole-3-thiol Current issues in pharmacy and medicine: science and practice. 2021;14(3):268-274. doi: https://doi.org/10.14739/2409-2932.2021.3.243176
Chekman IS, Nebesna TIu, Symonov PV. In silico: novyi napriam v rozrobtsi farmakolohichnykh ta farmatsevtychnykh vlastyvostei likarskykh zasobiv [In silico: a new direction in the development of pharmacological and pharmaceutical properties of medicinal products]. Klinichna farmatsiia. 2012;16(2):4-14. Ukrainian.
Biovia. Discovery Studio Visualizer, v 19.1.0.18287 [Software]. 2019. Available from: http://www.3dsbiovia.com
ChemAxon. MarvinSketch, Version 6.3.0. [Software]. 2015. Available from: http://www.chemaxon.com
Worldwide Protein Data Bank. (n.d.). Protein Data Bank (PDB) [Database]. Available from: http://www.pdb.org
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access)