Synthesis and acute toxicity of new S-derivatives (1,2,4-triazole-3(2H)-yl)methyl) thiopyrimidines
DOI:
https://doi.org/10.14739/2409-2932.2023.2.274586Keywords:
1,2,4-triazole, pyrimidine, acute toxicity, Danio rerio, LC50 concentrationAbstract
In the literature, there is insufficient information on the synthesis of compounds in a series of pyrimidine-2-thiol derivatives containing a five-membered nitrogen-containing heterocyclic fragment; at the same time, there are a sufficient number of examples, demonstrating the synthetic and biological potential for compounds of this kind.
The relevance of the study “structure – acute toxicity” relationship in a number of newly synthesized derivatives of 1,2,4-triazole-3(2H)-thione with pyrimidine-2-thiol is due to the synthesis of potential low molecular weight interferon inducers and antitumor agents, the search for molecular descriptors of their structure, important for establishing “structure – acute toxicity” laws, as a system for evaluating the biological effects of compounds. Therefore, it is strategically and economically justified to conduct a study of the acute toxicity of synthesized compounds as a priority.
The aim of the work is targeted synthesis of a number of S-derivatives (1,2,4-triazole-3(2H)-yl)methyl)thiopyrimidines and the establishment of the “structure – acute toxicity” relationship.
Materials and methods. A modern set of physical-chemical research methods was used to study the compounds. The study of the acute toxicity of the synthesized compounds was performed on adult Danio rerio. During the experiments, the fish were kept on a diet for a test period of 96 hours, and their mortality was checked every 24, 48, 72 and 96 hours with the test compounds in each mini-aquarium containing at least 7 individuals of Danio rerio.
Results. Results 1H NMR spectra confirm that the alkylation reaction occurs specifically on the sulfur atom. Thus, after analyzing LC50 data, we found that the least toxic among the studied compounds is 2-(((4-methyl-5-(octylthio)-4H-1,2,4-triazole-3-yl )methyl)thio)pyrimidine with an acute toxicity value of 49.66 mg/l. The most toxic compound is 2-(((4-methyl-5-(methylthio)-4H-1,2,4-triazole-3-yl)methyl)thio)pyrimidine with an LC50 value of 8.29 mg/l. The low toxicity of the compound 2-(((4-methyl-5-(octylthio)-4H-1,2,4-triazole-3-yl)methyl)thio)pyrimidine is most likely due to the presence of an octyl substituent, which sufficiently penetrates through biological membranes and does not have a strong toxic effect on organ systems. Furthermore, it does not accumulate but is metabolized in the cell.
Conclusions. New hybrids of 1,2,4-triazole-3(2H)-yl)methyl)thiopyrimidines were obtained using the heterocyclization reaction of the intermediate carbothioamide. To reduce the indicators of acute toxicity and increase their biological activity, synthesized S-derivatives of this series were created. It was established that S-derivatives of 1,2,4-triazole-3(2H)-yl)methyl)thiopyrimidines belong to moderately toxic to low-toxic compounds according to the classification of D. R. Passino. 2-(((4-Methyl-5-(octylthio)-4H-1,2,4-triazole-3-yl)methyl)thio)pyrimidine has an acute toxicity value of 49.66 mg/l. The most toxic compound is 2-(((4-methyl-5-(methylthio)-4H-1,2,4-triazole-3-yl)methyl)thio)pyrimidine with an LC50 value of 8.29 mg/l.
References
Karpenko, Yu. V., Panasenko, O. I., & Knysh, Ye. H. (2020). Biolohichno oriientovanyi syntez likiv (BIODS) na osnovi heterylpokhidnykh 2,5 dyzamishchenykh 1,3,4-oksadiazoliv (Chastyna 1) [Biologically oriented synthesis of medicines (BIODS) based on heterylpoxid 2,5-disubstituted 1,3,4-oxadiazoles (Part 1)]. Current issues in pharmacy and medicine: science and practice, 13(2), 390-398. [in Ukrainian]. https://doi.org/10.14739/2409-2932.2020.2.207211
Varynskyi, B., Parchenko, V., Kaplaushenko, A., Panasenko O., & Knysh, Ye. Development and Validation of a LC-ESI-MS Method for Detection of Piperidin-1-IUM {[5-(2-Furyl)-4-Phenyl-4H-1,2,4-Triazol-3-YL]Thio}acetate Residues in Poultry Eggs. Ankara Üniversitesi Eczacılık Fakültesi Dergisi, 2016, 40(3), 29-40. https://doi.org/10.1501/Eczfak_0000000586
Karpenko, Yu. V., & Panasenko, O. I. (2021). Search for antibacterial activity in a number of new S-derivatives (1,2,4-triazole-3(2H)-yl)methyl)thiopyrimidines. Current issues in pharmacy and medicine: science and practice, 14(2), 173-178. https://doi.org/10.14739/2409-2932.2021.2.234565
Zazharskyi, V., Parchenko, M., Parchenko, V., Davydenko, P., Kulishenko, O., & Zazharska N. (2020). Physicochemical properties of new S-derivatives of 5-(5-bromofuran-2-yl)-4-methyl-1,2,4-triazol-3-thiols. Voprosy khimii i khimicheskoi tekhnologii, (6), 50-58. https://doi.org/10.32434/0321-4095-2020-133-6-50-58
Gotsulya, A., & Brytanova, T. (2022). Synthesis, properties and biological potential some condensed derivatives 1,2,4-triazole. Journal of Faculty of Pharmacy of Ankara University, 46(2), 308-321. https://doi.org/10.33483/jfpau.971602
Kaplancıklı, Z., Yurttas, L., Turan-Zitouni, G., Özdemir, A., Göger, G., Demirci, F., Mohsen, A. U. (2013). Synthesis and Antimicrobial Activity of New Pyrimidine-Hydrazones. Letters in Drug Design & Discovery, 11(1), 76-81. https://doi.org/10.2174/15701808113109990037
Karpenko, Y., Hunchak, Y., Gutyj, B., Hunchak, A., Parchenko, M., & Parchenko, V. (2022). Advanced research for physico-chemical properties and parameters of toxicity piperazinium 2-((5-(furan-2-yl)-4-phenyl-4H-1,2,4-triazol-3-yl)thio)acetate. ScienceRise: Pharmaceutical Science, (2), 18-25. https://doi.org/10.15587/2519-4852.2022.255848
Passino, D. R. M., & Smith, S. B. (1987). Acute bioassays and hazard evaluation of representative contaminants detected in great lakes fish. Environmental Toxicology and Chemistry, 6(11), 901-907. https://doi.org/10.1002/etc.5620061111
Khilkovets, A., Karpenko, Y., Bigdan, O., Parchenko, M., & Parchenko, V. (2022). Synthetic and Biological Aspects of Studying the Properties of 1,2,4-Triazole Derivatives. Scientific Journal of Polonia University, 51(2), 324-331. https://doi.org/10.23856/5138
Zozulynets, D. М., Kaplaushenko, A. G., & Korzhova, A. S. (2021). Syntez ta vzaiemodiia z aldehidamy 4-amino-5-(khinolin-2-il)-4H-1,2,4-tryazol-3-tiolu [The synthesis of 4-amino-5-(quinolin-2-yl)-4H-1,2,4-triazole-3-thiol and its interaction with aldehydes]. Zhurnal orhanichnoi ta farmatsevtychnoi khimii, 19(1), 48-52. [in Ukrainian]. https://doi.org/10.24959/ophcj.21.188137
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access)