Synthesis and properties of 3-(ethylthio)-9-methyl-6-(alkylthio)pyrazolo[1,5-d][1,2,4]triazolo[3,4-f][1,2,4]triazines

Authors

DOI:

https://doi.org/10.14739/2409-2932.2022.3.263994

Keywords:

1,2,4-triazole, pyrazole, physico-chemical properties, molecular docking

Abstract

The combination of pyrazole and 1,2,4-triazole fragments in one structure makes it possible to achieve some success in creating potential biologically active compounds. Various factors contribute to this process. Among them, we can note the significant possibilities of chemical transformation involving these cycles, the simplicity, and reliability of methods, the creation of molecules with a certain level of bioavailability and the ability to influence a number of biochemical processes. Taking into account the presented facts, the creation of new compounds in a number of pyrazolo-triazole condensed systems is scientifically attractive with endowed features of practical significance and relevance.

The aim of the work was to identify optimal conditions for the production of 3-(ethylthio)-9-methyl-6-(alkylthio)pyrazolo[1,5-d][1,2,4]triazolo[3,4-f][1,2,4]triazines and to study the properties of the target reaction products.

Materials and methods. The chemical part of the work involved the step-by-step creation of target reaction products in the form of 3-(ethylthio)-9-methyl-6-(alkylthio)pyrazolo[1,5-d][1,2,4]triazolo[3,4-f][1,2,4]triazines. The first stage was aimed at conducting the interaction of diethyloxalate with acetone with the participation of sodium methylate in a methanol medium. Ethyl-2,4-dioxopentanoate was used in the conversion process to 3-methylpyrazole-5-carbohydrazide with the participation of hydrazine hydrate. Further modification of the molecule consisted of the gradual formation of the structure of 4-amino-5-(3-methylpyrazol-5-yl)-1,2,4-triazole-3-thiol. The next step involved the synthesis of 3-ethylthio-5-(3-methylpyrazol-5-yl)-1,2,4-triazole-4-amine. Further conversion included the production of potassium 3-ethylthio-9-methylpyrazolo[1,5-d][1,2,4]triazolo[3,4-f][1,2,4]triazine-6-thiolate and its S-alkyl derivatives along the triazine fragment. Cyclooxygenase-2, lanosterol-14α-demethylase and receptor tyrosine kinase were selected as model enzymes for docking, the crystal structure of which was loaded from the Protein Data Bank.

Results. The synthesis of 3-(ethylthio)-9-methyl-6-(alkylthio)-pyrazolo[1,5-d][1,2,4]triazolo[3,4-f][1,2,4]triazines were carried out and the optimal conditions for the production of these substances were determined. The structure of the chemical transformation products was proved and the results of the study of the main physical properties were recorded. The results of virtual studies provided an opportunity to substantiate the prospects of the selected chemical transformation vector, which ultimately made it possible to determine the biological potential of the obtained compounds.

Conclusions. Based on the results of the study, information was obtained that gives a certain idea of the possible level of influence of synthesized compounds on the activity of lanosterol-14α-demethylase, which makes it advisable to further search for substances with fungistatic and fungicidal effects.

Author Biographies

S. O. Fedotov, Zaporizhzhia State Medical University, Ukraine

PhD-student of the Department of Natural Sciences for Foreign Students and Toxicological Chemistry

A. S. Hotsulia, Zaporizhzhia State Medical University, Ukraine

PhD, DSc, Associate Professor of the Department of Natural Sciences for Foreign Students and Toxicological Chemistry

References

Boraei, A., Ghabbour, H. A., Gomaa, M. S., El Ashry, E., & Barakat, A. (2019). Synthesis and Anti-Proliferative Assessment of Triazolo-Thiadiazepine and Triazolo-Thiadiazine Scaffolds. Molecules, 24(24), 4471. https://doi.org/10.3390/molecules24244471

Othman, A. A., Kihel, M., & Amara, S. (2019). 1,3,4-Oxadiazole, 1,3,4-thiadiazole and 1,2,4-triazole derivatives as potential antibacterial agents. Arabian Journal of Chemistry, 12(7), 1660-1675. https://doi.org/10.1016/j.arabjc.2014.09.003

Can, N. Ö., Acar Çevik, U., Sağlık, B. N., Levent, S., Korkut, B., Öz-kay, Y., & Koparal, A. S. (2017). Synthesis, molecular docking studies, and antifungal activity evaluation of new benzimidazole-triazoles as potential lanosterol 14α-demethylase inhibitors. Journal of Chemistry, 2017, 9387102. https://doi.org/10.1155/2017/9387102

Shcherbyna, R., Panasenko, O., Polonets, O., Nedorezanıuk, N., & Duchenko, M. (2021). Synthesis, antimicrobial and antifungal activity of ylidenhydrazides of 2-((4-R-5-R1-4Н-1,2,4-triazol-3-yl)thio)acetaldehydes. Ankara Universitesi Eczacilik Fakultesi Dergisi, 45(3), 504-514. https://doi.org/10.33483/jfpau.939418

Yaroshenko, A. A., Parchenko, V. V., Bihdan, O. A., Panasenko, O. I., Karpenko, Y. V., & Karpun, E. O. Method for Trifuzol-neo assay determination by GC-MS. (2021). Research Journal of Pharmacy and Technology, 14(9), 4523-4528. https://doi.org/10.52711/0974-360X.2021.00787

Sonawane, R., & Mohite, S. (2021). Heterocyclic bridgehead Nitrogen atom system: review on [1,2,4]triazolo[3,4-b][1,3,4]thiadiazole and its pharmacological screening. Asian journal of research in chemistry, 14(3), 217-220. https://doi.org/10.52711/0974-4150.2021.00038

Safonov, A. (2020). Method of synthesis novel N'-substituted 2-((5-(thiophen-2-ylmethyl)-4H-1,2,4-triazol-3-yl)thio)acetohydrazides. Ankara Universitesi Eczacilik Fakultesi Dergisi, 44(2), 242-252. https://doi.org/10.33483/jfpau.580011

Frolova, Y., Kaplaushenko, A., & Nagornaya, N. (2020). Design, synthesis, antimicrobial and antifungal activities of new 1,2,4-triazole derivatives containing 1H-tetrazole moiety. Ankara Universitesi Eczacilik Fakultesi Dergisi, 44(1), 70-88. https://doi.org/10.33483/jfpau.574001

Samelyuk, Y. G., & Kaplaushenko, A. G. (2014). Synthesis of 3-alkylthio(sulfo)-1,2,4-triazoles, containing methoxyphenyl substituents at C5atoms, their antipyretic activity, propensity to adsorption and acute toxicity. Journal of Chemical and Pharmaceutical Research, 6(5), 1117-1121.

Safonov, A., Nevmyvaka, A., Panasenko, O. & Knysh, Y. (2021). Microwave synthesis of 3- and 4-substituted-5-((3-phenylpropyl)thio)-4H-1,2,4-triazoles. Ankara Universitesi Eczacilik Fakultesi Dergisi, 45(3), 457-466. https://doi.org/10.33483/jfpau.902274.

Varynskyi, B., Kaplaushenko, A., & Parchenko, V. (2018). Electrospray ionization mass spectrometry fragmentation pathways of salts of some 1,2,4-triazolylthioacetate acids, the active pharmaceutical ingredients. Asian Journal of Pharmaceutical and Clinical Research, 11(10), 303-312. https://doi.org/10.22159/ajpcr.2018.v11i10.16564

Gotsulya, A., Zaika, Y., & Brytanova, T. (2022). Synthesis, properties and biological potential some condensed derivatives 1,2,4-triazole. Ankara Universitesi Eczacilik Fakultesi Dergisi, 46(2), 308-321. https://doi.org/10.33483/jfpau.971602

Ismail, M. I., Mohamady, S., Samir, N., & Abouzid, K. A. M. (2020). Design, synthesis, and biological evaluation of novel 7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine inhibitors as antitumor agents. ACS Omega, 5, 20170-20176. https://doi.org/10.1021/acsomega.0c01829

Gotsulya, A. S. (2020). Synthesis and antiradical activity of alkyl derivatives of 5-(5-methyl-1H-pyrazol-3-yl)-4-phenyl-4H-1,2,4-triazole-3-thiol. Ankara Universitesi Eczacilik Fakultesi Dergisi, 44(2), 211-219. https://doi.org/10.33483/jfpau.616116

Fedotov, S. O., & Hotsulia, А. S. (2021). Synthesis and properties of S-derivatives of 4-amino-5-(5-methylpyrazol-3-yl)-1,2,4-triazole-3-thiol. Current issues in pharmacy and medicine: science and practice, 14(3), 268-274. https://doi.org/10.14739/2409-2932.2021.3.243176

Biovia. (2019). Discovery Studio Visualizer, v 19.1.0.18287 [Software]. Retrieved from http://www.3dsbiovia.com/

ChemAxon. (2015). MarvinSketch, Version 6.3.0. [Software]. Retrieved from http://www.chemaxon.com

Worldwide Protein Data Bank. (n.d.). Protein Data Bank (PDB) [Database]. Retrieved from http://www.pdb.org

Downloads

Published

2022-11-15

How to Cite

1.
Fedotov SO, Hotsulia AS. Synthesis and properties of 3-(ethylthio)-9-methyl-6-(alkylthio)pyrazolo[1,5-d][1,2,4]triazolo[3,4-f][1,2,4]triazines. Current issues in pharmacy and medicine: science and practice [Internet]. 2022Nov.15 [cited 2024Jul.16];15(3):227-34. Available from: http://pharmed.zsmu.edu.ua/article/view/263994

Issue

Section

Original research