Cучасні підходи до моделювання когнітивних порушень в експерименті (огляд літератури)
DOI:
https://doi.org/10.14739/2409-2932.2022.2.259429Ключові слова:
когнітивні порушення, моделювання, клітинні культури, тваринні моделі, щуриАнотація
Мета роботи – огляд фахових літературних джерел з наукової бази даних PubMed переважно за останні 20 років з аналізом сучасного погляду на підходи до моделювання когнітивних порушень в експерименті.
Матеріали та методи. Здійснили огляд наукової літератури за останні 20 років. З’ясували, що відсутність необхідних знань про патогенез когнітивних порушень, наявність великої кількості факторів ризику цих станів і дотепер залишаються основною проблемою під час розроблення принципів ранньої діагностики та лікування. Аналіз відомостей фахової літератури показав, що нині розрізняють 2 групи експериментальних підходів до моделювання когнітивних порушень: на культурах клітин і моделі на тваринах.
Висновки. Крім клінічних і популяційних спостережень, важливим залишається експериментальне моделювання когнітивних розладів. Останніми роками проблема вибору адекватної моделі для дослідження когнітивних порушень, що є важливим клінічним проявом багатьох неврологічних захворювань (хвороб Альцгеймера та Паркінсона, черепно-мозкових травм, судинних, демієлінізуючих та інфекційних захворювань, метаболічних і гормональних порушень, нейродегенеративних захворювань центральної нервової системи), набуває все більшої актуальності.
Вибір моделі та експериментального матеріалу – клітинні культури або тварини (від безхребетних до ссавців) – базується на чіткому розумінні дизайну дослідження та залежить від кінцевої мети, яку ставить перед собою дослідник.
Посилання
Hugo, J., & Ganguli, M. (2014). Dementia and cognitive impairment: epidemiology, diagnosis, and treatment. Clinics in geriatric medicine, 30(3), 421-442. https://doi.org/10.1016/j.cger.2014.04.001
Pessoa, R. M. P., Bomfim, A. J. L., Ferreira, B. L. C., & Chagas, M. H. N. (2019). Diagnostic criteria and prevalence of mild cognitive impairment in older adults living in the community: A systematic review and meta-analysis. Revista de Psiquiatria Clinica, 46(3), 72-79. https://doi.org/10.1590/0101-60830000000197
Qiu, C., Kivipelto, M., & von Strauss, E. (2009). Epidemiology of Alzheimer's disease: occurrence, determinants, and strategies toward intervention. Dialogues in clinical neuroscience, 11(2), 111-128. https://doi.org/10.31887/DCNS.2009.11.2/cqiu
United Nations. Department of Economic and Social Affairs (2015). World Population Ageing 2015 (ST/ESA/SER.A/390). https://www.un.org/en/development/desa/population/publications/pdf/ageing/WPA2015_Report.pdf
Eshkoor, S. A., Hamid, T. A., Mun, C. Y., & Ng, C. K. (2015). Mild cognitive impairment and its management in older people. Clinical interventions in aging, 10, 687-693. https://doi.org/10.2147/CIA.S73922
Saraceno, C., Musardo, S., Marcello, E., Pelucchi, S., & Di Luca, M. (2013). Modeling Alzheimer's disease: from past to future. Frontiers in pharmacology, 4, 77. https://doi.org/10.3389/fphar.2013.00077
Li, X., Bao, X., & Wang, R. (2016). Experimental models of Alzheimer's disease for deciphering the pathogenesis and therapeutic screening (Review). International journal of molecular medicine, 37(2), 271-283. https://doi.org/10.3892/ijmm.2015.2428
Choi, S. H., Kim, Y. H., Hebisch, M., Sliwinski, C., Lee, S., D'Avanzo, C., Chen, H., Hooli, B., Asselin, C., Muffat, J., Klee, J. B., Zhang, C., Wainger, B. J., Peitz, M., Kovacs, D. M., Woolf, C. J., Wagner, S. L., Tanzi, R. E., & Kim, D. Y. (2014). A three-dimensional human neural cell culture model of Alzheimer's disease. Nature, 515(7526), 274-278. https://doi.org/10.1038/nature13800
Daigle, I., & Li, C. (1993). apl-1, a Caenorhabditis elegans gene encoding a protein related to the human beta-amyloid protein precursor. Proceedings of the National Academy of Sciences of the United States of America, 90(24), 12045-12049. https://doi.org/10.1073/pnas.90.24.12045
Luo, L. Q., Martin-Morris, L. E., & White, K. (1990). Identification, secretion, and neural expression of APPL, a Drosophila protein similar to human amyloid protein precursor. The Journal of neuroscience, 10(12), 3849-3861. https://doi.org/10.1523/JNEUROSCI.10-12-03849.1990
Reiter, L. T., Potocki, L., Chien, S., Gribskov, M., & Bier, E. (2001). A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome research, 11(6), 1114-1125. https://doi.org/10.1101/gr.169101
Musa, A., Lehrach, H., & Russo, V. A. (2001). Distinct expression patterns of two zebrafish homologues of the human APP gene during embryonic development. Development genes and evolution, 211(11), 563-567. https://doi.org/10.1007/s00427-001-0189-9
Bai, Q., & Burton, E. A. (2011). Zebrafish models of Tauopathy. Biochimica et biophysica acta, 1812(3), 353-363. https://doi.org/10.1016/j.bbadis.2010.09.004
Do Carmo, S., & Cuello, A. C. (2013). Modeling Alzheimer's disease in transgenic rats. Molecular neurodegeneration, 8, 37. https://doi.org/10.1186/1750-1326-8-37
Lecanu, L., & Papadopoulos, V. (2013). Modeling Alzheimer's disease with non-transgenic rat models. Alzheimer's research & therapy, 5(3), 17. https://doi.org/10.1186/alzrt171
Lannfelt, L., Folkesson, R., Mohammed, A. H., Winblad, B., Hellgren, D., Duff, K., & Hardy, J. (1993). Alzheimer's disease: molecular genetics and transgenic animal models. Behavioural brain research, 57(2), 207-213. https://doi.org/10.1016/0166-4328(93)90137-f
Korte, M., Herrmann, U., Zhang, X., & Draguhn, A. (2012). The role of APP and APLP for synaptic transmission, plasticity, and network function: lessons from genetic mouse models. Experimental brain research, 217(3-4), 435-440. https://doi.org/10.1007/s00221-011-2894-6
Tesson, L., Cozzi, J., Ménoret, S., Rémy, S., Usal, C., Fraichard, A., & Anegon, I. (2005). Transgenic modifications of the rat genome. Transgenic research, 14(5), 531-546. https://doi.org/10.1007/s11248-005-5077-z
McLean, J. W., Fukazawa, C., & Taylor, J. M. (1983). Rat apolipoprotein E mRNA. Cloning and sequencing of double-stranded cDNA. The Journal of biological chemistry, 258(14), 8993-9000.
Whishaw, I. Q., Metz, G. A., Kolb, B., & Pellis, S. M. (2001). Accelerated nervous system development contributes to behavioral efficiency in the laboratory mouse: a behavioral review and theoretical proposal. Developmental psychobiology, 39(3), 151-170. https://doi.org/10.1002/dev.1041
Flood, D. G., Lin, Y. G., Lang, D. M., Trusko, S. P., Hirsch, J. D., Savage, M. J., Scott, R. W., & Howland, D. S. (2009). A transgenic rat model of Alzheimer's disease with extracellular Abeta deposition. Neurobiology of aging, 30(7), 1078-1090. https://doi.org/10.1016/j.neurobiolaging.2007.10.006
Liu, L., Orozco, I. J., Planel, E., Wen, Y., Bretteville, A., Krishnamurthy, P., Wang, L., Herman, M., Figueroa, H., Yu, W. H., Arancio, O., & Duff, K. (2008). A transgenic rat that develops Alzheimer's disease-like amyloid pathology, deficits in synaptic plasticity and cognitive impairment. Neurobiology of disease, 31(1), 46-57. https://doi.org/10.1016/j.nbd.2008.03.005
Zahorsky-Reeves, J., Lawson, G., Chu, D. K., Schimmel, A., Ezell, P. C., Dang, M., & Couto, M. (2007). Maintaining longevity in a triple transgenic rat model of Alzheimer’s disease. Journal of the American Association for Laboratory Animal Science, 46, 124.
Leon, W. C., Canneva, F., Partridge, V., Allard, S., Ferretti, M. T., DeWilde, A., Vercauteren, F., Atifeh, R., Ducatenzeiler, A., Klein, W., Szyf, M., Alhonen, L., & Cuello, A. C. (2010). A novel transgenic rat model with a full Alzheimer's-like amyloid pathology displays pre-plaque intracellular amyloid-beta-associated cognitive impairment. Journal of Alzheimer's disease : JAD, 20(1), 113-126. https://doi.org/10.3233/JAD-2010-1349
Lambert, M. P., Velasco, P. T., Chang, L., Viola, K. L., Fernandez, S., Lacor, P. N., Khuon, D., Gong, Y., Bigio, E. H., Shaw, P., De Felice, F. G., Krafft, G. A., & Klein, W. L. (2007). Monoclonal antibodies that target pathological assemblies of Abeta. Journal of neurochemistry, 100(1), 23-35. https://doi.org/10.1111/j.1471-4159.2006.04157.x
Cohen, R. M., Rezai-Zadeh, K., Weitz, T. M., Rentsendorj, A., Gate, D., Spivak, I., Bholat, Y., Vasilevko, V., Glabe, C. G., Breunig, J. J., Rakic, P., Davtyan, H., Agadjanyan, M. G., Kepe, V., Barrio, J. R., Bannykh, S., Szekely, C. A., Pechnick, R. N., & Town, T. (2013). A transgenic Alzheimer rat with plaques, tau pathology, behavioral impairment, oligomeric aβ, and frank neuronal loss. The Journal of neuroscience, 33(15), 6245-6256. https://doi.org/10.1523/JNEUROSCI.3672-12.2013
Frautschy, S. A., Cole, G. M., & Baird, A. (1992). Phagocytosis and deposition of vascular beta-amyloid in rat brains injected with Alzheimer beta-amyloid. The American journal of pathology, 140(6), 13891399.
Nakamura, S., Murayama, N., Noshita, T., Annoura, H., & Ohno, T. (2001). Progressive brain dysfunction following intracerebroventricular infusion of beta(1-42)-amyloid peptide. Brain research, 912(2), 128-136. https://doi.org/10.1016/s0006-8993(01)02704-4
Butterfield D. A. (1997). beta-Amyloid-associated free radical oxidative stress and neurotoxicity: implications for Alzheimer's disease. Chemical research in toxicology, 10(5), 495-506. https://doi.org/10.1021/tx960130e
Qin, T., Prins, S., Groeneveld, G. J., Van Westen, G., de Vries, H. E., Wong, Y. C., Bischoff, L., & de Lange, E. (2020). Utility of Animal Models to Understand Human Alzheimer's Disease, Using the Mastermind Research Approach to Avoid Unnecessary Further Sacrifices of Animals. International journal of molecular sciences, 21(9), 3158. https://doi.org/10.3390/ijms21093158
Lecanu, L., Greeson, J., & Papadopoulos, V. (2006). Beta-amyloid and oxidative stress jointly induce neuronal death, amyloid deposits, gliosis, and memory impairment in the rat brain. Pharmacology, 76(1), 19-33. https://doi.org/10.1159/000088929
Pilcher H. (2006). Alzheimer's disease could be "type 3 diabetes". The Lancet. Neurology, 5(5), 388-389. https://doi.org/10.1016/s1474-4422(06)70434-3
De la Monte, S. M., & Tong, M. (2009). Mechanisms of nitrosamine-mediated neurodegeneration: potential relevance to sporadic Alzheimer's disease. Journal of Alzheimer's disease : JAD, 17(4), 817-825. https://doi.org/10.3233/JAD-2009-1098
Grünblatt, E., Hoyer, S., & Riederer, P. (2004). Gene expression profile in streptozotocin rat model for sporadic Alzheimer's disease. Journal of neural transmission, 111(3), 367-386. https://doi.org/10.1007/s00702-003-0030-x
Nazem, A., Sankowski, R., Bacher, M., & Al-Abed, Y. (2015). Rodent models of neuroinflammation for Alzheimer's disease. Journal of neuroinflammation, 12, 74. https://doi.org/10.1186/s12974-015-0291-y
Kumar, A., Seghal, N., Naidu, P. S., Padi, S. S., & Goyal, R. (2007). Colchicines-induced neurotoxicity as an animal model of sporadic dementia of Alzheimer's type. Pharmacological reports : PR, 59(3), 274-283.
Vitek, M. P., Araujo, J. A., Fossel, M., Greenberg, B. D., Howell, G. R., Rizzo, S., Seyfried, N. T., Tenner, A. J., Territo, P. R., Windisch, M., Bain, L. J., Ross, A., Carrillo, M. C., Lamb, B. T., & Edelmayer, R. M. (2021). Translational animal models for Alzheimer's disease: An Alzheimer's Association Business Consortium Think Tank. Alzheimer's & dementia, 6(1), e12114. https://doi.org/10.1002/trc2.12114
Schütt, T., Helboe, L., Pedersen, L. Ø., Waldemar, G., Berendt, M., & Pedersen, J. T. (2016). Dogs with Cognitive Dysfunction as a Spontaneous Model for Early Alzheimer's Disease: A Translational Study of Neuropathological and Inflammatory Markers. Journal of Alzheimer's disease : JAD, 52(2), 433-449. https://doi.org/10.3233/JAD-151085
Prpar Mihevc, S., & Majdič, G. (2019). Canine Cognitive Dysfunction and Alzheimer's Disease - Two Facets of the Same Disease?. Frontiers in neuroscience, 13, 604. https://doi.org/10.3389/fnins.2019.00604
Chapagain, D., Range, F., Huber, L., & Virányi, Z. (2018). Cognitive Aging in Dogs. Gerontology, 64(2), 165-171. https://doi.org/10.1159/000481621
Phillips, K. A., Bales, K. L., Capitanio, J. P., Conley, A., Czoty, P. W., 't Hart, B. A., Hopkins, W. D., Hu, S. L., Miller, L. A., Nader, M. A., Nathanielsz, P. W., Rogers, J., Shively, C. A., & Voytko, M. L. (2014). Why primate models matter. American journal of primatology, 76(9), 801-827. https://doi.org/10.1002/ajp.22281
Hutchison, R. M., & Everling, S. (2012). Monkey in the middle: why non-human primates are needed to bridge the gap in resting-state investigations. Frontiers in neuroanatomy, 6, 29. https://doi.org/10.3389/fnana.2012.00029
Uylings, H. B., Groenewegen, H. J., & Kolb, B. (2003). Do rats have a prefrontal cortex?. Behavioural brain research, 146(1-2), 3-17. https://doi.org/10.1016/j.bbr.2003.09.028
Heuer, E., Rosen, R. F., Cintron, A., & Walker, L. C. (2012). Nonhuman primate models of Alzheimer-like cerebral proteopathy. Current pharmaceutical design, 18(8), 1159-1169. https://doi.org/10.2174/138161212799315885
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).