Current modeling approaches to experimental cognitive impairment (a literature review)

Authors

DOI:

https://doi.org/10.14739/2409-2932.2022.2.259429

Keywords:

cognition disorders, experimental model, cell cultures, animal models, rats

Abstract

The aim of the work is to review the professional literature sources from the scientific database PubMed mainly for the last 20 years analyzing the modern view on approaches to experimental modeling of cognitive impairment.

Materials and methods. A review of the scientific literature over the past 20 years was performed. The lack of requisite knowledge about the pathogenesis of cognitive impairment and the wide range of risk factors for these conditions continue to be major challenges in the development of guidelines on early diagnosis and treatment. The literary analysis suggests that all modeling approaches to experimental cognitive impairment are currently divided into two groups: cell culture and animal models.

Conclusions. Experimental modeling of cognitive impairment remains important in addition to clinical and population-based studies. In recent years, the problem of selecting an adequate model to study cognitive impairment, which is a central clinical manifestation of various neurological diseases (Alzheimer’s and Parkinson’s diseases, traumatic brain injury, vascular, demyelinating, and infectious diseases, metabolic aberrations and hormonal imbalance, neurodegenerative diseases of the central nervous system) is becoming increasingly relevant.

The choice of model and experimental material – animals or cultures (invertebrate and mammalian cells) is based on a clear understanding of the study design and depends on the ultimate goal of research.

 

Author Biographies

D. V. Tymofiiv, Zaporizhzhia State Medical University, Ukraine

Assistant of the Department of Pathophysiology with Normal Physiology Course

O. V. Hancheva, Zaporizhzhia State Medical University, Ukraine

MD, PhD, DSc, Professor, Head of the Department of Pathophysiology with Normal Physiology Course

References

Hugo, J., & Ganguli, M. (2014). Dementia and cognitive impairment: epidemiology, diagnosis, and treatment. Clinics in geriatric medicine, 30(3), 421-442. https://doi.org/10.1016/j.cger.2014.04.001

Pessoa, R. M. P., Bomfim, A. J. L., Ferreira, B. L. C., & Chagas, M. H. N. (2019). Diagnostic criteria and prevalence of mild cognitive impairment in older adults living in the community: A systematic review and meta-analysis. Revista de Psiquiatria Clinica, 46(3), 72-79. https://doi.org/10.1590/0101-60830000000197

Qiu, C., Kivipelto, M., & von Strauss, E. (2009). Epidemiology of Alzheimer's disease: occurrence, determinants, and strategies toward intervention. Dialogues in clinical neuroscience, 11(2), 111-128. https://doi.org/10.31887/DCNS.2009.11.2/cqiu

United Nations. Department of Economic and Social Affairs (2015). World Population Ageing 2015 (ST/ESA/SER.A/390). https://www.un.org/en/development/desa/population/publications/pdf/ageing/WPA2015_Report.pdf

Eshkoor, S. A., Hamid, T. A., Mun, C. Y., & Ng, C. K. (2015). Mild cognitive impairment and its management in older people. Clinical interventions in aging, 10, 687-693. https://doi.org/10.2147/CIA.S73922

Saraceno, C., Musardo, S., Marcello, E., Pelucchi, S., & Di Luca, M. (2013). Modeling Alzheimer's disease: from past to future. Frontiers in pharmacology, 4, 77. https://doi.org/10.3389/fphar.2013.00077

Li, X., Bao, X., & Wang, R. (2016). Experimental models of Alzheimer's disease for deciphering the pathogenesis and therapeutic screening (Review). International journal of molecular medicine, 37(2), 271-283. https://doi.org/10.3892/ijmm.2015.2428

Choi, S. H., Kim, Y. H., Hebisch, M., Sliwinski, C., Lee, S., D'Avanzo, C., Chen, H., Hooli, B., Asselin, C., Muffat, J., Klee, J. B., Zhang, C., Wainger, B. J., Peitz, M., Kovacs, D. M., Woolf, C. J., Wagner, S. L., Tanzi, R. E., & Kim, D. Y. (2014). A three-dimensional human neural cell culture model of Alzheimer's disease. Nature, 515(7526), 274-278. https://doi.org/10.1038/nature13800

Daigle, I., & Li, C. (1993). apl-1, a Caenorhabditis elegans gene encoding a protein related to the human beta-amyloid protein precursor. Proceedings of the National Academy of Sciences of the United States of America, 90(24), 12045-12049. https://doi.org/10.1073/pnas.90.24.12045

Luo, L. Q., Martin-Morris, L. E., & White, K. (1990). Identification, secretion, and neural expression of APPL, a Drosophila protein similar to human amyloid protein precursor. The Journal of neuroscience, 10(12), 3849-3861. https://doi.org/10.1523/JNEUROSCI.10-12-03849.1990

Reiter, L. T., Potocki, L., Chien, S., Gribskov, M., & Bier, E. (2001). A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome research, 11(6), 1114-1125. https://doi.org/10.1101/gr.169101

Musa, A., Lehrach, H., & Russo, V. A. (2001). Distinct expression patterns of two zebrafish homologues of the human APP gene during embryonic development. Development genes and evolution, 211(11), 563-567. https://doi.org/10.1007/s00427-001-0189-9

Bai, Q., & Burton, E. A. (2011). Zebrafish models of Tauopathy. Biochimica et biophysica acta, 1812(3), 353-363. https://doi.org/10.1016/j.bbadis.2010.09.004

Do Carmo, S., & Cuello, A. C. (2013). Modeling Alzheimer's disease in transgenic rats. Molecular neurodegeneration, 8, 37. https://doi.org/10.1186/1750-1326-8-37

Lecanu, L., & Papadopoulos, V. (2013). Modeling Alzheimer's disease with non-transgenic rat models. Alzheimer's research & therapy, 5(3), 17. https://doi.org/10.1186/alzrt171

Lannfelt, L., Folkesson, R., Mohammed, A. H., Winblad, B., Hellgren, D., Duff, K., & Hardy, J. (1993). Alzheimer's disease: molecular genetics and transgenic animal models. Behavioural brain research, 57(2), 207-213. https://doi.org/10.1016/0166-4328(93)90137-f

Korte, M., Herrmann, U., Zhang, X., & Draguhn, A. (2012). The role of APP and APLP for synaptic transmission, plasticity, and network function: lessons from genetic mouse models. Experimental brain research, 217(3-4), 435-440. https://doi.org/10.1007/s00221-011-2894-6

Tesson, L., Cozzi, J., Ménoret, S., Rémy, S., Usal, C., Fraichard, A., & Anegon, I. (2005). Transgenic modifications of the rat genome. Transgenic research, 14(5), 531-546. https://doi.org/10.1007/s11248-005-5077-z

McLean, J. W., Fukazawa, C., & Taylor, J. M. (1983). Rat apolipoprotein E mRNA. Cloning and sequencing of double-stranded cDNA. The Journal of biological chemistry, 258(14), 8993-9000.

Whishaw, I. Q., Metz, G. A., Kolb, B., & Pellis, S. M. (2001). Accelerated nervous system development contributes to behavioral efficiency in the laboratory mouse: a behavioral review and theoretical proposal. Developmental psychobiology, 39(3), 151-170. https://doi.org/10.1002/dev.1041

Flood, D. G., Lin, Y. G., Lang, D. M., Trusko, S. P., Hirsch, J. D., Savage, M. J., Scott, R. W., & Howland, D. S. (2009). A transgenic rat model of Alzheimer's disease with extracellular Abeta deposition. Neurobiology of aging, 30(7), 1078-1090. https://doi.org/10.1016/j.neurobiolaging.2007.10.006

Liu, L., Orozco, I. J., Planel, E., Wen, Y., Bretteville, A., Krishnamurthy, P., Wang, L., Herman, M., Figueroa, H., Yu, W. H., Arancio, O., & Duff, K. (2008). A transgenic rat that develops Alzheimer's disease-like amyloid pathology, deficits in synaptic plasticity and cognitive impairment. Neurobiology of disease, 31(1), 46-57. https://doi.org/10.1016/j.nbd.2008.03.005

Zahorsky-Reeves, J., Lawson, G., Chu, D. K., Schimmel, A., Ezell, P. C., Dang, M., & Couto, M. (2007). Maintaining longevity in a triple transgenic rat model of Alzheimer’s disease. Journal of the American Association for Laboratory Animal Science, 46, 124.

Leon, W. C., Canneva, F., Partridge, V., Allard, S., Ferretti, M. T., DeWilde, A., Vercauteren, F., Atifeh, R., Ducatenzeiler, A., Klein, W., Szyf, M., Alhonen, L., & Cuello, A. C. (2010). A novel transgenic rat model with a full Alzheimer's-like amyloid pathology displays pre-plaque intracellular amyloid-beta-associated cognitive impairment. Journal of Alzheimer's disease : JAD, 20(1), 113-126. https://doi.org/10.3233/JAD-2010-1349

Lambert, M. P., Velasco, P. T., Chang, L., Viola, K. L., Fernandez, S., Lacor, P. N., Khuon, D., Gong, Y., Bigio, E. H., Shaw, P., De Felice, F. G., Krafft, G. A., & Klein, W. L. (2007). Monoclonal antibodies that target pathological assemblies of Abeta. Journal of neurochemistry, 100(1), 23-35. https://doi.org/10.1111/j.1471-4159.2006.04157.x

Cohen, R. M., Rezai-Zadeh, K., Weitz, T. M., Rentsendorj, A., Gate, D., Spivak, I., Bholat, Y., Vasilevko, V., Glabe, C. G., Breunig, J. J., Rakic, P., Davtyan, H., Agadjanyan, M. G., Kepe, V., Barrio, J. R., Bannykh, S., Szekely, C. A., Pechnick, R. N., & Town, T. (2013). A transgenic Alzheimer rat with plaques, tau pathology, behavioral impairment, oligomeric aβ, and frank neuronal loss. The Journal of neuroscience, 33(15), 6245-6256. https://doi.org/10.1523/JNEUROSCI.3672-12.2013

Frautschy, S. A., Cole, G. M., & Baird, A. (1992). Phagocytosis and deposition of vascular beta-amyloid in rat brains injected with Alzheimer beta-amyloid. The American journal of pathology, 140(6), 13891399.

Nakamura, S., Murayama, N., Noshita, T., Annoura, H., & Ohno, T. (2001). Progressive brain dysfunction following intracerebroventricular infusion of beta(1-42)-amyloid peptide. Brain research, 912(2), 128-136. https://doi.org/10.1016/s0006-8993(01)02704-4

Butterfield D. A. (1997). beta-Amyloid-associated free radical oxidative stress and neurotoxicity: implications for Alzheimer's disease. Chemical research in toxicology, 10(5), 495-506. https://doi.org/10.1021/tx960130e

Qin, T., Prins, S., Groeneveld, G. J., Van Westen, G., de Vries, H. E., Wong, Y. C., Bischoff, L., & de Lange, E. (2020). Utility of Animal Models to Understand Human Alzheimer's Disease, Using the Mastermind Research Approach to Avoid Unnecessary Further Sacrifices of Animals. International journal of molecular sciences, 21(9), 3158. https://doi.org/10.3390/ijms21093158

Lecanu, L., Greeson, J., & Papadopoulos, V. (2006). Beta-amyloid and oxidative stress jointly induce neuronal death, amyloid deposits, gliosis, and memory impairment in the rat brain. Pharmacology, 76(1), 19-33. https://doi.org/10.1159/000088929

Pilcher H. (2006). Alzheimer's disease could be "type 3 diabetes". The Lancet. Neurology, 5(5), 388-389. https://doi.org/10.1016/s1474-4422(06)70434-3

De la Monte, S. M., & Tong, M. (2009). Mechanisms of nitrosamine-mediated neurodegeneration: potential relevance to sporadic Alzheimer's disease. Journal of Alzheimer's disease : JAD, 17(4), 817-825. https://doi.org/10.3233/JAD-2009-1098

Grünblatt, E., Hoyer, S., & Riederer, P. (2004). Gene expression profile in streptozotocin rat model for sporadic Alzheimer's disease. Journal of neural transmission, 111(3), 367-386. https://doi.org/10.1007/s00702-003-0030-x

Nazem, A., Sankowski, R., Bacher, M., & Al-Abed, Y. (2015). Rodent models of neuroinflammation for Alzheimer's disease. Journal of neuroinflammation, 12, 74. https://doi.org/10.1186/s12974-015-0291-y

Kumar, A., Seghal, N., Naidu, P. S., Padi, S. S., & Goyal, R. (2007). Colchicines-induced neurotoxicity as an animal model of sporadic dementia of Alzheimer's type. Pharmacological reports : PR, 59(3), 274-283.

Vitek, M. P., Araujo, J. A., Fossel, M., Greenberg, B. D., Howell, G. R., Rizzo, S., Seyfried, N. T., Tenner, A. J., Territo, P. R., Windisch, M., Bain, L. J., Ross, A., Carrillo, M. C., Lamb, B. T., & Edelmayer, R. M. (2021). Translational animal models for Alzheimer's disease: An Alzheimer's Association Business Consortium Think Tank. Alzheimer's & dementia, 6(1), e12114. https://doi.org/10.1002/trc2.12114

Schütt, T., Helboe, L., Pedersen, L. Ø., Waldemar, G., Berendt, M., & Pedersen, J. T. (2016). Dogs with Cognitive Dysfunction as a Spontaneous Model for Early Alzheimer's Disease: A Translational Study of Neuropathological and Inflammatory Markers. Journal of Alzheimer's disease : JAD, 52(2), 433-449. https://doi.org/10.3233/JAD-151085

Prpar Mihevc, S., & Majdič, G. (2019). Canine Cognitive Dysfunction and Alzheimer's Disease - Two Facets of the Same Disease?. Frontiers in neuroscience, 13, 604. https://doi.org/10.3389/fnins.2019.00604

Chapagain, D., Range, F., Huber, L., & Virányi, Z. (2018). Cognitive Aging in Dogs. Gerontology, 64(2), 165-171. https://doi.org/10.1159/000481621

Phillips, K. A., Bales, K. L., Capitanio, J. P., Conley, A., Czoty, P. W., 't Hart, B. A., Hopkins, W. D., Hu, S. L., Miller, L. A., Nader, M. A., Nathanielsz, P. W., Rogers, J., Shively, C. A., & Voytko, M. L. (2014). Why primate models matter. American journal of primatology, 76(9), 801-827. https://doi.org/10.1002/ajp.22281

Hutchison, R. M., & Everling, S. (2012). Monkey in the middle: why non-human primates are needed to bridge the gap in resting-state investigations. Frontiers in neuroanatomy, 6, 29. https://doi.org/10.3389/fnana.2012.00029

Uylings, H. B., Groenewegen, H. J., & Kolb, B. (2003). Do rats have a prefrontal cortex?. Behavioural brain research, 146(1-2), 3-17. https://doi.org/10.1016/j.bbr.2003.09.028

Heuer, E., Rosen, R. F., Cintron, A., & Walker, L. C. (2012). Nonhuman primate models of Alzheimer-like cerebral proteopathy. Current pharmaceutical design, 18(8), 1159-1169. https://doi.org/10.2174/138161212799315885

Published

2022-08-01

How to Cite

1.
Tymofiiv DV, Hancheva OV. Current modeling approaches to experimental cognitive impairment (a literature review). Current issues in pharmacy and medicine: science and practice [Internet]. 2022Aug.1 [cited 2025Jan.29];15(2):208-14. Available from: http://pharmed.zsmu.edu.ua/article/view/259429

Issue

Section

Review