Heterocyclizations based on N-(R-hydrazine-1-carbonothioyl)cycloalkancarboxamides: functionalized azoles and their antimicrobial activity





N-(acylhydrazine-1-carbonothioyl)cycloalkanecarboxamides, heterocyclization, 1,3,4-thiadiazoles, 1,2,4-triazoles, antimicrobial activity


Synthesis and structural modification of azoles remains an important area of medical chemistry and allows to obtain new compounds with a wide range of biological activity. Among the significant number of azoles, 1,3,4-thiadiazoles and 1,2,4-triazoles attract special attention, among which are known drugs, larvicides, insecticides, growth regulators, etc. Even though heterocyclizations of functionally substituted hydrazines for their synthesis are well studied, N-(R-hydrazine-1-carbonothioyl)cycloalkanecarboxamides, and nowadays, remain reagents with undiscovered potential. Moreover, the introduction of lipophilic “pharmacophore” fragments (cycloalkanes) in the structure of 1,3,4-thiadiazoles and 1,2,4-triazoles is a promising direction for their modification. That should provide additional intermolecular interactions with enzymes and may lead to enhancement or alteration of the biological activity vector. Thus, the synthesis of new derivatives of this class of compounds and the study of their antibacterial properties remains an urgent problem of medical and organic chemistry.

Aim. To investigate the heterocyclization of N-(R-hydrazine-1-carbonothioyl)cycloalkanecarboxa-mides, to establish the structure and antibacterial activity of the synthesized compounds.

Materials and methods. Methods of organic synthesis, physical and physical-chemical methods of analysis of organic compounds (NMR 1H-spectroscopy, chromato-mass spectrometry, elemental analysis). The antimicrobial activity of the synthesized compounds was studied according to the generally accepted method for standard strains of microorganisms and fungi.

Results. The peculiarities of heterocyclization of N-(R-hydrazine-1-carbonothioyl)cycloalkanecarboxamides have been studied and the factors influencing this reaction have been elucidated. It was shown that these compounds under the conditions of the heterocyclization reaction in concentrated mineral acids form 5-R-2-amino-1,3,4-thiadiazoles. The intermediate undergoes additional hydrolysis by cleavage of the cycloalkanecarboxyl fragment. Alternative methods for the synthesis of 5-R-2-amino-1,3,4-thiadiazoles were proposed. For the first time, the original 4-cycloalkanecarbonyl-3-(amino-,phenyloxo-(thio)methyl-1,5-dihydro-4H-1,2,4-triazole-5-thiones were synthesized by prolonged heating of the corresponding disubstituted thiosemicarbazides. It was not possible to extend this reaction to other diacylthiosemicarbazides, the latter undergo heterocyclization in the presence of sodium hydroxide with the formation of the known 5-R-2,4-dihydro-3H-1,2,4-triazole-3-thiones. 1H NMR spectra were studied, analyzed, and regularities of splitting of characteristic protons in functionalized azoles were established. Conducted microbiological screening was showed that 5-R-2-amino-1,3,4-thiadiazoles, 4-cycloalkanecarbonyl-3-(amino-,phenyloxo-(thio)methyl-1,5-dihydro-4H-1,2,4-triazole-5-thiones and 5-R-2,4-dihydro-3H-1,2,4-triazole-3-thione were less effective antibacterial and antifungal agents (MIC 100–200 μg/ml) compared with N-(R-hydrazine-1-carbonothioyl)cycloalkanecarboxamides (MIC 3.125–200 μg/ml).

Conclusions. It was found that N-(R-hydrazine-1-carbonotioyl)cycloalkane-carboxamides, depending on the conditions of heterocyclization form 5-R-2-amino-1,3,4-thiadiazoles, 3-(phenyloxo-(thio)methyl-1,5-dihydro-4H-1,2,4-triazole-5-thiones or 5-R-2,4-dihydro-3H-1,2,4-triazole-3-thiones. It was established that synthesized azoles were shown less effective antimicrobial and antifungal activity in comparison with N-(R-hydrazine-1-carbonothioyl)cycloalkanecarboxamides.

Author Biographies

О. V. Kholodniak, Zaporizhzhia State Medical University, Ukraine

PhD, Assistant of the Department of Organic and Bioorganic Chemistry

Yu. V. Shubina, Zaporizhzhia State Medical University, Ukraine

PhD, Senior Lecturer of the Department of Organic and Bioorganic Chemistry

S. I. Kovalenko, Zaporizhzhia State Medical University, Ukraine

PhD, DSc, Professor, Head of the Department of Organic and Bioorganic Chemistry


Bedane, K. G., Singh, G. S. (2015). Reactivity and diverse synthetic applications of acyl isothiocyanates. ARKIVOC, 206-245. http://dx.doi.org/10.3998/ark.5550190.p009.052

Moharana, A. K., Dash, R. N., & Subudhi, B. B. (2020). Thiosemicarbazides: Updates on Antivirals Strategy. Mini reviews in medicinal chemistry, 20(20), 2135-2152. https://doi.org/10.2174/1389557520666200818212408

Metwally, M. A., Bondock, S., El-Azap, H., & Kandeel, E. E. M. (2011). Thiosemicarbazides: Synthesis and reactions. Journal of Sulfur Chemistry, 32(5), 489-519. https://doi.org/10.1080/17415993.2011.601869

Vincent-Rocan, J. F., & Beauchemin, A. M. (2016). N-Isocyanates, N-Isothiocyanates and Their Masked/Blocked Derivatives: Synthesis and Reactivity. Synthesis, 48(21), 3625-3645. https://doi.org/10.1055/s-0036-1588066

Nora De Souza, M. V. (2005). Synthesis and biological activity of natural thiazoles: An important class of heterocyclic compounds. Journal of Sulfur Chemistry, 26(4-5), 429-449. https://doi.org/10.1080/17415990500322792

Jain A. K., Sharma S., Vaidya A., Ravichandran V., & Agrawal, R. K. (2013). 1,3,4-Thiadiazole and its Derivatives: A Review on Recent Progress in Biological Activities. Chemical Biology & Drug Design, 81(5), 557-576. https://doi.org/10.1111/cbdd.12125

Hu Y., Li C.-Y., Wang X.-M., Yang Y.-H., Zhu H.-L. (2014). 1,3,4-Thiadiazole: Synthesis, Reactions, and Applications in Medicinal Agricultural and Materials Chemistry. Chemical Reviews, 114(10), 5572-5610. https://doi.org/10.1021/cr400131u

Sukinah, H. A., & Abdelwahed, R. S. (2020). Review of the synthesis and biological activity of thiazoles, Synthetic Communications, 51(5), 670-700. https://doi.org/10.1080/00397911.2020.1854787

Sahiba, N., Sethiya, A., Soni, J., Agarwal, D. K., & Agarwal, S. (2020). Saturated Five-Membered Thiazolidines and Their Derivatives: From Synthesis to Biological Applications. Topics in Current Chemistry, 378, 34. https://doi.org/10.1007/s41061-020-0298-4

Sathish Kumar, S., & P. Kavitha, H. (2013). Synthesis and Biological Applications of Triazole Derivatives – A Review. Mini-Reviews in Organic Chemistry, 10(1), 40-65. https://doi.org/10.2174/1570193x11310010004

Maddila, S., Pagadala, R., & Jonnalagadda, S. (2013). 1,2,4-Triazoles: A Review of Synthetic Approaches and the Biological Activity. Letters in Organic Chemistry, 10(10), 693-714. https://doi.org/10.2174/157017861010131126115448

Gümüş, M., Yakan, M., & Koca, İ. (2019). Recent advances of thiazole hybrids in biological applications. Future Medicinal Chemistry, 11(15), 1979-1998. https://doi.org/10.4155/fmc-2018-0196.

Matysiak, J. (2015). Biological and pharmacological activities of 1,3,4-thiadiazole based compounds. Mini reviews in medicinal chemistry, 15(9), 762-775. https://doi.org/10.2174/1389557515666150519104057

Sahu, J. K., Ganguly, S., & Kaushik, A. (2013). Triazoles: a valuable insight into recent developments and biological activities. Chinese journal of natural medicines, 11(5), 456-465. https://doi.org/10.1016/S1875-5364(13)60084-9

DrugBank Online : [database]. https://go.drugbank.com/drugs

Antypenko, L., Meyer, F., Kholodniak, O., Sadykova, Z., Jirásková, T., Troianova, A., Buhaiova, V., Cao, S., Kovalenko, S., Garbe, L. A., & Steffens, K. G. (2019). Novel acyl thiourea derivatives: Synthesis, antifungal activity, gene toxicity, drug-like and molecular docking screening. Archiv der Pharmazie, 352(2), e1800275. https://doi.org/10.1002/ardp.201800275

Kholodniak, O. V., Sokolova, K. V., Kovalenko, S. I., & Pidpletnya, O. A. (2020). Directed search for compounds that affect the excretory function of rat kidneys, among new cycloalkylcarbonyl thioureas and thiosemicarbazides derivatives. Medychna ta klinichna khimiia - Medical and Clinical Chemistry, (2), 5-16. https://doi.org/10.11603/mcch.2410-681X.2020.v.i2.11351

Kholodniak, O. V., Stavytskyi, V. V., Kazunin, M. S., Bukhtiayrova, N. V., Berest, G. G., Belenichev, I. F., & Kovalenko, S. I. (2021). Design, synthesis and anticonvulsant activity of new Diacylthiosemicarbazides. Biopolymers and Cell, 37(2), 125-142. https://doi.org/10.7124/bc.000A46

Clinical and Laboratory Standards Institute. (2006). Performance standards for antimicrobial disk susceptibility tests, (9th ed) CLSI standard M2-A9. Wayne, PA: Clinical and Laboratory Standards Institute.

Barbosa, G. A. D., & de Aguiar, A. P. (2019). Synthesis of 1,3,4-Thiadiazole Derivatives and Microbiological Activities: A Review. Revista Virtual de Química, 11(3), 806-848. https://doi.org/10.21577/1984-6835.20190058

Baranac-Stojanović, M., & Stojanović, M. (2013). 1H NMR chemical shifts of cyclopropane and cyclobutane: a theoretical study. The Journal of organic chemistry, 78(4), 1504-1507. https://doi.org/10.1021/jo3025863

Breitmaier E. (2002). Structure elucidation by NMR in organic chemistry: a practical guide (3rd ed). Wiley. https://doi.org/10.1002/0470853069




How to Cite

Kholodniak ОV, Shubina YV, Kovalenko SI. Heterocyclizations based on N-(R-hydrazine-1-carbonothioyl)cycloalkancarboxamides: functionalized azoles and their antimicrobial activity. Current issues in pharmacy and medicine: science and practice [Internet]. 2022Mar.15 [cited 2024Jul.21];15(1):5-12. Available from: http://pharmed.zsmu.edu.ua/article/view/252037



Original research