Pathomorphological changes of capillaries in the cerebral cortex in type 2 diabetes mellitus




diabetes mellitus, brain, capillaries, pericytes


The aim of the study was to determine microscopic, immunohistochemical, electron microscopic, morphometric parameters of capillaries in the cerebral cortex in deceased patients with type 2 diabetes mellitus (DM) in comparison with the conditional control group and the group of deceased patients with dyscirculatory ischemic encephalopathy.

Materials and methods. Microscopic, immunohistochemical, electron microscopic and morphometric studies of the cerebral cortex capillaries were performed in 3 groups: group I – 20 deceased patients with type 2 DM, group II conditional control (CC) – 20 deceased patients without clinical morphological signs of DM and cerebrovascular pathology, group III – 20 patients with dyscirculatory ischemic encephalopathy (DIEP).

Results. It was found that in type 2 DM, the capillaries in the cerebral cortex lose pericytes due to their apoptosis: the number of pericytes in the cortical capillaries in type 2 DM was statistically significantly lower by 57.14 % compared to CC group and 50.00 % lower compared to DIEP group, the level of caspase-3 expression in the cortical microvessels in type 2 DM was significantly higher by 230.85 % compared with CC group and 81.67 % higher than in DIEP group. According to electron microscopy in type 2 DM, apoptosis of pericytes and single endothelial cells in the cerebral cortex capillaries was determined as well as significant expansion of basement membranes with the accumulation of electron-dense amorphous material and collagen fibrils. According to the results of morphometry, the outer diameter of the cortical capillaries in type 2 DM group was 4.90 % significantly larger, the inner diameter was 9.78 % smaller and the walls were 66.62 % thicker (compared with CC group) due to the accumulation of PAS-positive substances of blood serum and fibrosis, confirmed by 22.96 % greater area of type IV collagen expression in the microvessel walls.

Conclusions. The pathomorphological changes of microvessels identified in deceased patients with type 2 diabetes mellitus are signs of diabetic cerebral microangiopathy.

Author Biographies

V. O. Tumanskyi, Zaporizhzhia State Medical University, Ukraine

MD, PhD, DSc, Professor of the Department of Pathological Anatomy and Forensic Medicine, Vice-Rector for Research

Yu. M. Avramenko, Zaporizhzhia State Medical University, Ukraine

MD, PhD, Assistant of the Department of Pathological Anatomy and Forensic Medicine


Lin, X., Xu, Y., Pan, X., Xu, J., Ding, Y., Sun, X., Song, X., Ren, Y., & Shan, P. F. (2020). Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Scientific reports, 10(1), 14790.

World Health Organization. (2021, November 10). Diabetes.

Garcia-Serrano, A. M., & Duarte, J. (2020). Brain Metabolism Alterations in Type 2 Diabetes: What Did We Learn From Diet-Induced Diabetes Models?. Frontiers in neuroscience, 14, 229.

McConnell, H. L., Kersch, C. N., Woltjer, R. L., & Neuwelt, E. A. (2017). The Translational Significance of the Neurovascular Unit. The Journal of biological chemistry, 292(3), 762-770.

Van Sloten, T. T., Sedaghat, S., Carnethon, M. R., Launer, L. J., & Stehouwer, C. (2020). Cerebral microvascular complications of type 2 diabetes: stroke, cognitive dysfunction, and depression. The lancet. Diabetes & endocrinology, 8(4), 325-336.

Mäe, M. A., Li, T., Bertuzzi, G., Raschperger, E., Vanlandewijck, M., He, L., Nahar, K., Dalheim, A., Hofmann, J. J., Laviña, B., Keller, A., Betsholtz, C., & Genové, G. (2018). Prolonged systemic hyperglycemia does not cause pericyte loss and permeability at the mouse blood-brain barrier. Scientific reports, 8(1), 17462.

Rom, S., Zuluaga-Ramirez, V., Gajghate, S., Seliga, A., Winfield, M., Heldt, N. A., Kolpakov, M. A., Bashkirova, Y. V., Sabri, A. K., & Persidsky, Y. (2019). Hyperglycemia-Driven Neuroinflammation Compromises BBB Leading to Memory Loss in Both Diabetes Mellitus (DM) Type 1 and Type 2 Mouse Models. Molecular neurobiology, 56(3), 1883-1896.

Avtandilov, G. G. (2002). Osnovy kolichestvennoi patologicheskoi anatomii [Fundamentals of quantitative pathological anatomy]. Moscow: Meditsina. [in Russian].

Brown, L. S., Foster, C. G., Courtney, J. M., King, N. E., Howells, D. W., & Sutherland, B. A. (2019). Pericytes and Neurovascular Function in the Healthy and Diseased Brain. Frontiers in cellular neuroscience, 13, 282.

Uemura, M. T., Maki, T., Ihara, M., Lee, V., & Trojanowski, J. Q. (2020). Brain Microvascular Pericytes in Vascular Cognitive Impairment and Dementia. Frontiers in aging neuroscience, 12, 80.

Harrell, C. R., Simovic Markovic, B., Fellabaum, C., Arsenijevic, A., Djonov, V., & Volarevic, V. (2018). Molecular mechanisms underlying therapeutic potential of pericytes. Journal of biomedical science, 25(1), 21.

Geranmayeh, M. H., Rahbarghazi, R., & Farhoudi, M. (2019). Targeting pericytes for neurovascular regeneration. Cell communication and signaling : CCS, 17(1), 26.

Vanlandewijck, M., He, L., Mäe, M. A., Andrae, J., Ando, K., Del Gaudio, F., Nahar, K., Lebouvier, T., Laviña, B., Gouveia, L., Sun, Y., Raschperger, E., Räsänen, M., Zarb, Y., Mochizuki, N., Keller, A., Lendahl, U., & Betsholtz, C. (2018). A molecular atlas of cell types and zonation in the brain vasculature. Nature, 554(7693), 475-480.

Hall, C. N., Reynell, C., Gesslein, B., Hamilton, N. B., Mishra, A., Sutherland, B. A., O'Farrell, F. M., Buchan, A. M., Lauritzen, M., & Attwell, D. (2014). Capillary pericytes regulate cerebral blood flow in health and disease. Nature, 508(7494), 55-60.

Cai, C., Fordsmann, J. C., Jensen, S. H., Gesslein, B., Lønstrup, M., Hald, B. O., Zambach, S. A., Brodin, B., & Lauritzen, M. J. (2018). Stimulation-induced increases in cerebral blood flow and local capillary vasoconstriction depend on conducted vascular responses. Proceedings of the National Academy of Sciences of the United States of America, 115(25), E5796-E5804.

Rustenhoven, J., Jansson, D., Smyth, L. C., & Dragunow, M. (2017). Brain Pericytes As Mediators of Neuroinflammation. Trends in pharmacological sciences, 38(3), 291-304.

Maric-Bilkan, C., Flynn, E. R., & Chade, A. R. (2012). Microvascular disease precedes the decline in renal function in the streptozotocin-induced diabetic rat. American journal of physiology. Renal physiology, 302(3), F308-F315.

Price, T. O., Sheibani, N., & Shah, G. N. (2017). Regulation of high glucose-induced apoptosis of brain pericytes by mitochondrial CA VA: A specific target for prevention of diabetic cerebrovascular pathology. Biochimica et biophysica acta. Molecular basis of disease, 1863(4), 929-935.

Patrick, P., Price, T. O., Diogo, A. L., Sheibani, N., Banks, W. A., & Shah, G. N. (2015). Topiramate Protects Pericytes from Glucotoxicity: Role for Mitochondrial CA VA in Cerebromicrovascular Disease in Diabetes. Journal of endocrinology and diabetes, 2(2), 1-7.

Hayes K. L. (2019). Pericytes in Type 2 Diabetes. Advances in experimental medicine and biology, 1147, 265-278.

Barber, A. J., Gardner, T. W., & Abcouwer, S. F. (2011). The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy. Investigative ophthalmology & visual science, 52(2), 1156-1163.

Sengillo, J. D., Winkler, E. A., Walker, C. T., Sullivan, J. S., Johnson, M., & Zlokovic, B. V. (2013). Deficiency in mural vascular cells coincides with blood-brain barrier disruption in Alzheimer's disease. Brain pathology, 23(3), 303-310.

Liu, Q., Radwanski, R., Babadjouni, R., Patel, A., Hodis, D. M., Baumbacher, P., Zhao, Z., Zlokovic, B., & Mack, W. J. (2019). Experimental chronic cerebral hypoperfusion results in decreased pericyte coverage and increased blood-brain barrier permeability in the corpus callosum. Journal of cerebral blood flow and metabolism, 39(2), 240-250.

Sweeney, M. D., Zhao, Z., Montagne, A., Nelson, A. R., & Zlokovic, B. V. (2019). Blood-Brain Barrier: From Physiology to Disease and Back. Physiological reviews, 99(1), 21-78.

Kisler, K., Nelson, A. R., Rege, S. V., Ramanathan, A., Wang, Y., Ahuja, A., Lazic, D., Tsai, P. S., Zhao, Z., Zhou, Y., Boas, D. A., Sakadžić, S., & Zlokovic, B. V. (2017). Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nature neuroscience, 20(3), 406-416.

Persidsky, Y., Hill, J., Zhang, M., Dykstra, H., Winfield, M., Reichenbach, N. L., Potula, R., Mukherjee, A., Ramirez, S. H., & Rom, S. (2016). Dysfunction of brain pericytes in chronic neuroinflammation. Journal of cerebral blood flow and metabolism, 36(4), 794-807.

Biswas, S., & Chakrabarti, S. (2019). Increased Extracellular Matrix Protein Production in Chronic Diabetic Complications: Implications of Non-Coding RNAs. Non-coding RNA, 5(1), 30.

Amtul, Z., Yang, J., Lee, T. Y., & Cechetto, D. F. (2019). Pathological Changes in Microvascular Morphology, Density, Size and Responses Following Comorbid Cerebral Injury. Frontiers in aging neuroscience, 11, 47.

Shavrin, V. O., & Avramenko, Yu. M. (2020). Immunogistokhimicheskaya kharakteristika ekspressii markerov MMP-9 i TIMP-1 v kore golovnogo mozga pri sakharnom diabete 2 tipa [Immunohistochemical characteristics of MMP-9 and TIMP-1 markers expression in the cerebral cortex in diabetes mellitus type 2]. Zaporozhye medical journal, 22(4), 468-472.



How to Cite

Tumanskyi VO, Avramenko YM. Pathomorphological changes of capillaries in the cerebral cortex in type 2 diabetes mellitus. CIPM [Internet]. 2021Oct.25 [cited 2023Dec.1];14(3):354-62. Available from:



Original research