Chromato-mass-spectroscopic research of chemical composition of Elaeagnus angustifolia L.

Authors

  • O. I. Panasenko Zaporizhzhia State Medical University, Ukraine, Ukraine https://orcid.org/0000-0002-6102-3455
  • V. I. Mozul Zaporizhzhia State Medical University, Ukraine, Ukraine
  • O. M. Denysenko Zaporizhzhia State Medical University, Ukraine, Ukraine
  • I. I. Aksonova Zaporizhzhia State Medical University, Ukraine, Ukraine https://orcid.org/0000-0002-3534-700X
  • T. V. Oberemko LLC “PMD-UKRAINE”, Kyiv, Ukraine

DOI:

https://doi.org/10.14739/2409-2932.2021.2.233708

Keywords:

Elaeagnus angustifolia, GS-MS, antimicrobial action, antidiabetic action, cytotoxic action, anti-inflammatory action, biological activity

Abstract

The aim of the work was chromato-mass-spectroscopic research of chemical composition of Elaeagnus angustifolia L. fruits and leaves and identifying further prospects for the use of this plant in medicine.

Materials and methods. Raw materials of Elaeagnus angustifolia L. were selected as objects of study. The tincture was obtained by maceration and the raw material was extracted with methyl alcohol at room temperature for 10 days according to the method of making tinctures. The study of the chemical composition of Elaeagnus angustifolia L. was carried out using gas chromatograph Agilent 7890B GC System (Agilent, Santa Clara, CA, USA) with mass spectrometric detector Agilent 5977 BGC/MSD (Agilent, Santa Clara, CA, USA) and chromatographic column DB-5ms (30 m × 250 mkm × 0,25 mkm).

Results. 23 compounds (1 in the isomeric state) in fruits and 20 compounds (2 in the isomeric state) in the leaf of Elaeagnus angustifolia L. were identified. The main components of fruits were sitosterol (phytosterols) – 12.53 %, propyl acetate (esters of carboxylic acids) – 12.60 %, chamazulene (terpenes) – 11.97 % and palmitic acid (fatty acids) – 8.28 %. The main component of leaves were sitosterol (phytosterols) – 17.57 %, 1-(2-hydroxy-5-methylphenyl)-ethanone (ketone) – 8.35 %, phytol (terpenes) – 6.10 %.

It is known from the literature that chamazulene has antioxidant, antinociceptive, cytotoxic activity. Sitosterol has anti-inflammatory and antidiabetic activity. Hexadecanoic (palmitic) acid has antimicrobial, antidiabetic and antioxidant properties. Phytol is characterized by a wide range of biological action – antimicrobial, antinociceptive, anti-inflammatory, antioxidant and cytotoxic.

Conclusions. Based on the above, the olive can be considered as a source of antimicrobial, antinociceptive, anti-inflammatory, antioxidant, antidiabetic and cytotoxic drugs.

Author Biographies

O. I. Panasenko, Zaporizhzhia State Medical University, Ukraine

PhD, DSc, Professor, Head of the Department of Natural Sciences for Foreign Students and Toxicological Chemistry

V. I. Mozul, Zaporizhzhia State Medical University, Ukraine

PhD, Associate Professor of the Department of Pharmacognosy, Pharmacology and Botany

O. M. Denysenko, Zaporizhzhia State Medical University, Ukraine

PhD, Associate Professor of the Department of Pharmacognosy, Pharmacology and Botany

I. I. Aksonova, Zaporizhzhia State Medical University, Ukraine

PhD, Teaching Assistant of the Department of Pharmacognosy, Pharmacology and Botany

T. V. Oberemko, LLC “PMD-UKRAINE”, Kyiv

Director

References

Elaeagnus (n.d.). The Plant List. http://www.theplantlist.org/tpl1.1/search?q=Elaeagnus

Khadivi, A. (2018). Phenotypic characterization of Elaeagnus angustifolia using multivariate analysis. Industrial Crops and Products, 120, 155-161. https://doi.org/10.1016/j.indcrop.2018.04.050

Nazir, N., Zahoor, M. & Nisar, M. (2020). A Review on Traditional Uses and Pharmacological Importance of Genus Elaeagnus Species. The Botanical Review, 86, 247-280. https://doi.org/10.1007/s12229-020-09226-y

Panahi, Y., Alishiri, G. H., Bayat, N., Hosseini, S. M., & Sahebkar, A. (2016). Efficacy of Elaeagnus Angustifolia extract in the treatment of knee osteoarthritis: a randomized controlled trial. EXCLI journal, 15, 203-210. https://doi.org/10.17179/excli2015-639

Mahboubi, M. (2018). Elaeagnus angustifolia and its therapeutic applications in osteoarthritis. Industrial Crops and Products, 121, 36-45. https://doi.org/10.1016/j.indcrop.2018.04.051

Niknam, F., Azadi, A., Barzegar, A., Faridi, P., Tanideh, N., & Zarshenas, M. M. (2016). Phytochemistry and Phytotherapeutic Aspects of Elaeagnus angustifolia L. Current drug discovery technologies, 13(4), 199-210. https://doi.org/10.2174/1570163813666160905115325

Hamidpour, R., Hamidpour, S., Hamidpour, M., Shahlari, M., Sohraby, M., Shahlari, N., & Hamidpour, R. (2017). Russian olive (Elaeagnus angustifolia L.): From a variety of traditional medicinal applications to its novel roles as active antioxidant, anti-inflammatory, anti-mutagenic and analgesic agent. Journal of Traditional and Complementary Medicine, 7(1), 24-29. https://doi.org/10.1016/j.jtcme.2015.09.004

Sabouri, S., Rad, A. H., Peighambardoust, S. H., Fathipour, R. B., Feshangchi, J., Ansari, F., & Pourjafar, H. (2021). The Oleaster (Elaeagnus angustifolia): A Comprehensive Review on Its Composition, Ethnobotanical and Prebiotic Values. Current pharmaceutical biotechnology, 22(3), 367-379. https://doi.org/10.2174/1389201020666191107112243

State Enterprise Ukrainian Scientific Pharmacopoeial Center of Medicines Quality. (2008, February 1). Derzhavna Farmakopeia Ukrainy. Dopovnennia 2 [The State Pharmacopoeia of Ukraine (1st ed., Suppl. 1)]. Kharkiv: Naukovo-ekspertnyi farmakopeinyi tsentr. [in Ukrainian].

Noori, K., Omidi, H., & Pirahmadi, L. (2016). Morphological characteristics, essential oil, chamazulene percentage and anti-oxidation enzymes activity changes of chamomile Matricaria recutita L. under the soil and water salinity. Journal of Fundamental and Applied Sciences, 8(2S), 2293-2310.

Reis Simas, D. L., Mérida-Reyes, M. S., Muñoz-Wug, M. A., Cordeiro, M. S., Giorno, T., Taracena, E. A., Oliva-Hernández, B. E., Martínez-Arévalo, J. V., Fernandes, P. D., Pérez-Sabino, J. F., & Jorge Ribeiro da Silva, A. (2019). Chemical composition and evaluation of antinociceptive activity of the essential oil of Stevia serrata Cav. from Guatemala. Natural product research, 33(4), 577-579. https://doi.org/10.1080/14786419.2017.1399376

Russo, A., Bruno, M., Avola, R., Cardile, V., & Rigano, D. (2020). Chamazulene-Rich Artemisia arborescens Essential Oils Affect the Cell Growth of Human Melanoma Cells. Plants, 9(8), 1000. https://doi.org/10.3390/plants9081000

Liao, P. C., Lai, M. H., Hsu, K. P., Kuo, Y. H., Chen, J., Tsai, M. C., Li, C. X., Yin, X. J., Jeyashoke, N., & Chao, L. K. (2018). Identification of β-Sitosterol as in Vitro Anti-Inflammatory Constituent in Moringa oleifera. Journal of agricultural and food chemistry, 66(41), 10748-10759. https://doi.org/10.1021/acs.jafc.8b04555

Paniagua-Pérez, R., Flores-Mondragón, G., Reyes-Legorreta, C., Herrera-López, B., Cervantes-Hernández, I., Madrigal-Santillán, O., Morales-González, J. A., Álvarez-González, I., & Madrigal-Bujaidar, E. (2016). Evaluation of the anti-inflammatory capacity of beta-sitosterol in rodent assays. African journal of traditional, complementary, and alternative medicines : AJTCAM, 14(1), 123-130. https://doi.org/10.21010/ajtcam.v14i1.13

Kurano, M., Hasegawa, K., Kunimi, M., Hara, M., Yatomi, Y., Teramoto, T., & Tsukamoto, K. (2018). Sitosterol prevents obesity-related chronic inflammation. Biochimica et biophysica acta. Molecular and cell biology of lipids, 1863(2), 191-198. https://doi.org/10.1016/j.bbalip.2017.12.004

Babu, S., & Jayaraman, S. (2020). An update on β-sitosterol: A potential herbal nutraceutical for diabetic management. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 131, 110702. https://doi.org/10.1016/j.biopha.2020.110702

Shaaban, M. T., Ghaly, M. F., & Fahmi, S. M. (2021). Antibacterial activities of hexadecanoic acid methyl ester and green-synthesized silver nanoparticles against multidrug-resistant bacteria. Journal of basic microbiology, 61(6), 557-568. https://doi.org/10.1002/jobm.202100061

Budiadji, A. F., Mapanawang, A. L., Sedeng, D., Muh, N., Tualeka, A., Fambrene, B. T., Ismail, Latuconcina, K. R., Djafar, Y., & Daud, A. (2016). Identification of hexadecanoic acid compound which in golobe extract (Hornstedtiazingiberaceae). International Journal of Health Medicine and Current Research - Ijhmcr, 1(1), 48-52.

Lee, W., Woo, E. R., & Lee, D. G. (2016). Phytol has antibacterial property by inducing oxidative stress response in Pseudomonas aeruginosa. Free radical research, 50(12), 1309-1318. https://doi.org/10.1080/10715762.2016.1241395

Islam, M. T., Ali, E. S., Uddin, S. J., Shaw, S., Islam, M. A., Ahmed, M. I., Chandra Shill, M., Karmakar, U. K., Yarla, N. S., Khan, I. N., Billah, M. M., Pieczynska, M. D., Zengin, G., Malainer, C., Nicoletti, F., Gulei, D., Berindan-Neagoe, I., Apostolov, A., Banach, M., Yeung, A., … Atanasov, A. G. (2018). Phytol: A review of biomedical activities. Food and chemical toxicology, 121, 82-94. https://doi.org/10.1016/j.fct.2018.08.032

Downloads

Published

2021-06-01

How to Cite

1.
Panasenko OI, Mozul VI, Denysenko OM, Aksonova II, Oberemko TV. Chromato-mass-spectroscopic research of chemical composition of Elaeagnus angustifolia L. Current issues in pharmacy and medicine: science and practice [Internet]. 2021Jun.1 [cited 2024Oct.30];14(2):179-84. Available from: http://pharmed.zsmu.edu.ua/article/view/233708

Issue

Section

Original research