Synthesis and anticancer activity of 2-cyano-2-(4-oxo-3-phenylthiazolidin-2-ylidene)-N-arylacetamides

Authors

DOI:

https://doi.org/10.14739/2409-2932.2020.2.207100

Keywords:

4-thiazolidinones, Knoevenagel condensation, enamines, antitumor activity

Abstract

 

Search for new biologically active compounds includes the directed design of molecules based on the so-called structural blocks – usually the privileged (structures, to which the 4-thiazolidinone cycle belongs. Therefore the development of methods for the synthesis of small "drug-like" molecules from 2-cyanomethylidene-4-thiazolidinone group as well as the study of their biological profile is an urgent task for modern medicinal chemistry.

Aim. To design and to the synthesis of novel 5-ylidene derivatives of 2-cyano-2-(4-oxo-3-phenylthiazolidin-2-ylidene)-N-arylacetamides. Study of the antitumor activity of synthesized compounds.

Materials and methods. Organic synthesis, study of the spectral characteristics of obtained 4-thiazolidinones (1H and 13C NMR spectroscopy, LC- MS spectrometry). In vitro antitumor activity study according to the DTP Program of the National Cancer Institute (USA).

Results. A number of 5-substituted 2-cyano-2-(4-oxo-3-phenylthiazolidin-2-ylidene)-N-arylacetamide derivatives had been synthesized. The structure and purity of the synthesized compounds were confirmed by the methods of elemental analysis, 1H, 13C NMR spectroscopy and LC-MS. The antitumor activity of some of the synthesized compounds was investigated on a panel of 59 human tumor cell lines representing nine neoplastic diseases.

Conclusions. Based on the C5 modification of the methylene group of the 4-thiazolidinone cycle, the target 5-ylidene and 5-aminomethylene-2-cyano-2-(4-oxo-3-phenylthiazolidin-2-ylidene)-N-arylacetamides had been synthesized. A hit-compound 2-cyano-2-[5-[(4-methoxyphenyl)methylene]-4-oxo-3-phenylthiazolidin-2-ylidene]-N-arylacetamide was identified that selectively inhibited the growth of some cell lines of CNS, kidney and breast cancers.

 

References

Ayati, A., Emami, S., Asadipour, A., Shafiee, A., & Foroumadi, A. (2015). Recent applications of 1,3-thiazole core structure in the identification of new lead compounds and drug discovery. European Journal of Medicinal Chemistry, 97, 699-718. https://doi.org/10.1016/j.ejmech.2015.04.015

Kaminskyy, D., Kryshchyshyn, A., & Lesyk, R. (2017). 5-Ene-4-thiazolidinones – An efficient tool in medicinal chemistry. European Journal of Medicinal Chemistry, 140, 542-594. https://doi.org/10.1016/j.ejmech.2017.09.031

Stojanovic, M., Dzambaski, Z., Bondzic, B., Aleksic, J., & Baranac-Stojanovic, M. (2014). 4-Oxothiazolidines with Exocyclic C=C Double Bond(s): Synthesis, Structure, Reactions and Biological Activity. Current Or-ganic Chemistry, 18(9), 1108-1148. https://doi.org/10.2174/138527281809140624120436

Tripathi, A. C., Gupta, S. J., Fatima, G. N., Sonar, P. K., Verma, A., & Saraf, S. K. (2014). 4-Thiazolidinones: The advances continue. European Journal of Medicinal Chemistry, 72, 52-77. https://doi.org/10.1016/j.ejmech.2013.11.017

Jain, V. S., Vora, D. K., & Ramaa, C. S. (2013). Thiazolidine-2,4-diones: Progress towards multifarious applications. Bioorganic & Medicinal Chemistry, 21(7), 1599-1620. https://doi.org/10.1016/j.bmc.2013.01.029

Jain, A. K., Vaidya, A., Ravichandran, V., Kashaw, S. K., & Agrawal, R. K. (2012). Recent developments and biological activities of thiazolidinone derivatives: A review. Bioorganic & Medicinal Chemistry, 20(11), 3378-3395. https://doi.org/10.1016/j.bmc.2012.03.069

Lesyk, R. B., & Zimenkovsky, B. S. (2004). 4-thiazolidones: Centenarian history, current status and perspectives for modern organic and medicinal chemistry. Current Organic Chemistry, 8(16), 1547-1577. https://doi.org/10.2174/1385272043369773

Kryshchyshyn, A. P. (2017). Frahment-oriientovanyi dyzain likarskykh zasobiv [Fragment-based drug design (FBDD)]. Zhurnal orhanichnoi ta farmatsevtychnoi khimii, 15(1), 28-44. [in Ukrainian]. https://doi.org/10.24959/zofh.17.913

Morphy, R., & Rankovic, Z. (2005). Designed multiple ligands. An emerging drug discovery paradigm. Journal of Medicinal Chemistry, 48(21), 6523-6543. https://doi.org/10.1021/jm058225d

Morphy, J. R., & Harris C. J. (Eds.). (2012). Designing multi-target drugs. Royal Society of Chemistry.

Zhang, W. L., Pei, J. F., & Lai, L. H. (2017). Computational Multitarget Drug Design. Journal of Chemical Information and Modeling, 57(3), 403-412. https://doi.org/10.1021/acs.jcim.6b00491

Bolognesi, M. L., & Cavalli, A. (2016). Multitarget Drug Discovery and Polypharmacology. Chemmedchem, 11(12), 1190-1192. https://doi.org/10.1002/cmdc.201600161

Shaveta, Mishra, S., & Singh, P. (2016). Hybrid molecules: The privileged scaffolds for various pharmaceuticals. European Journal of Medicinal Chemistry, 124, 500-536. https://doi.org/10.1016/j.ejmech.2016.08.039

Kaminskyy, D., Kryshchyshyn, A., & Lesyk, R. (2017b). Recent developments with rhodanine as a scaffold for drug discovery. Expert Opinion on Drug Discovery, 12(12), 1233-1252. https://doi.org/10.1080/17460441.2017.1388370

Kryshchyshyn, A., Roman, O., Lozynskyi, A., & Lesyk, R. (2018). Thiopyrano 2,3-d Thiazoles as New Efficient Scaffolds in Medicinal Chemistry. Scientia Pharmaceutica, 86(2), Article Unsp 26. https://doi.org/10.3390/scipharm86020026

Tao, Z. Q., Gomha, S. M., Badrey, M. G., El-Idreesy, T. T., & Eldebss, T. M. A. (2018). Novel 4-Heteroaryl-antipyrines: Synthesis, Molecular Docking, and Evaluation as Potential Antibreast Cancer Agents. Journal of Heterocyclic Chemistry, 55(10), 2408-2416. https://doi.org/10.1002/jhet.3305

Kumar, R. & Patil, S. (2017). Biological prospective of 4-thiazolidinone: a re-view. Hygeia: Journal for Drugs and Medicines, 9(1), 80-97. https://doi.org/10.15254/H.J.D.Med.9.2017.166

Radwan, M. A. A., Ragab, E. A., Sabry, N. M., & El-Shenawy, S. M. (2007). Synthesis and biological evaluation of new 3-substituted indole derivatives as potential anti-inflammatory and analgesic agents. Bioorganic & Medicinal Chemistry, 15(11), 3832-3841. https://doi.org/10.1016/j.bmc.2007.03.024

Musini, V. M., Rezapour, P., Wright, J. M., Bassett, K., & Jauca, C. D. (2012). Blood pressure lowering efficacy of loop diuretics for primary hypertension. Cochrane Database of Systematic Reviews(8), Article Cd003825. https://doi.org/10.1002/14651858.CD003825.pub3

Galletti, F., Strazzullo, P., Barba, G., Cappuccio, F. P., Iacone, R., & Mancini, M. (1991). Diuretic therapy for mild hypertension – a comparison of the metabolic effects of etozoline and chlorthalidone during long-term treatment. Current Therapeutic Research-Clinical and Experimental, 50(2), 159-166.

Fisher, R., & Blum, D. (1995). Clobazam, oxcarbazepine, tiagabine, topiramate, and other new antiepileptic drugs. Epilepsia, 36, S105-S114. https://doi.org/10.1111/j.1528-1157.1995.tb05993.x

Bialer, M., Johannessen, S. I., Kupferberg, H. J., Levy, R. H., Loiseau, P., & Perucca, E. (1996). Progress report on new antiepileptic drugs: A summary of the Third Eilat Conference. Epilepsy Research, 25(3), 299-319. https://doi.org/10.1016/s0920-1211(96)00081-2

Kaminskyy, D., Gzella, A. K., & Lesyk, R. (2014). Cyclocondensation of thi-oamides and haloacetic acid derivatives provides only 4-thiazolidinones; isomeric 5-thiazolidinones were not observed. Synthetic Communications, 44(2), 231-236. https://doi.org/10.1080/00397911.2013.800551

El-Desoky, S. I., Bondock, S. B., Etman, H. A., Fadda, A. A., & Metwally, M. A. (2003). Synthesis of some new thiazole derivatives of pharmaceutical interest. Sulfur Letters, 26(3), 127-135. https://doi.org/10.1080/0278611031000095331

Fadda, A. A., Bondock, S., Rabie, R., & Etman, H. A. (2008). Cyanoacetamide derivatives as synthons in heterocyclic synthesis. Turkish Journal of Chemistry, 32(3), 259-286.

Monks, A., Scudiero, D., Skehan, P., Shoemaker, R., Paull, K., Vistica, D., Hose, C., Langley, J., Cronise, P., Vaigrowolff, A., Graygoodrich, M., Camp-bell, H., Mayo, J., & Boyd, M. (1991). Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor-cell lines. Journal of the National Cancer Institute, 83(11), 757-766. https://doi.org/10.1093/jnci/83.11.757

Boyd, M. R., & Pauli, K. D. (1995). Some practical considerations and applications of the National Cancer Institute in vitro anticancer drug discovery screen. Drug Development Research, 34(2), 91-109. https://doi.org/10.1002/ddr.430340203

Boyd, M. R. (1997). The NCI in vitro anticancer drug discovery screen. In Anticancer Drug Development Guide (pp. 23-42). Humana Press, Totowa, NJ.

Shoemaker, R. H. (2006). The NCI60 human tumour cell line anticancer drug screen. Nature Reviews Cancer, 6(10), 813-823. https://doi.org/10.1038/nrc1951

Farag, A. M., Dawood, K. M., & Elmenoufy, H. A. (2004). A convenient route to pyridones, pyrazolo 2,3-a pyrimidines and pyrazolo 5,1-c triazines incorporating antipyrine moiety. Heteroatom Chemistry, 15(7), 508-514. https://doi.org/10.1002/hc.20046

Rostom, S. A. F. (2006). Synthesis and in vitro antitumor evaluation of some indeno 1,2-c-pyrazol(in)es substituted with sulfonamide, sulfonylurea(-thiourea) pharmacophores, and some derived thiazole ring systems. Bioorganic & Medicinal Chemistry, 14(19), 6475-6485. https://doi.org/10.1016/j.bmc.2006.06.020

How to Cite

1.
Kryshchyshyn-Dylevych AP. Synthesis and anticancer activity of 2-cyano-2-(4-oxo-3-phenylthiazolidin-2-ylidene)-N-arylacetamides. Current issues in pharmacy and medicine: science and practice [Internet]. 2020Jul.3 [cited 2024Dec.23];13(2). Available from: http://pharmed.zsmu.edu.ua/article/view/207100

Issue

Section

Original research