Синтез, будова та властивості похідних 7'-((4-аміно-5-тіо-1,2,4-тріазол-3-іл)метил)теофіліну
DOI:
https://doi.org/10.14739/2409-2932.2020.2.207019Ключові слова:
1, 2, 4-тріазол, теофілін, фізико-хімічні властивості, молекулярний докінгАнотація
Поєднання похідних 1,2,4-тріазолу й теофіліну створює підґрунтя для одержання біологічно активних речовин. Застосування цих гетероциклічних систем дає змогу використовувати нескладні методи хімічної модифікації та доступні реагенти. Це зумовлює актуальність обраного напряму наукових пошуків.
Мета роботи – дослідження методів синтезу та вивчення властивостей гетероциклічних систем, що містять у своїй структурі теофілін і 1,2,4-тріазольний фрагмент, створюють цікаве з наукового погляду хімічне різноманіття та є перспективними в галузі пошуку біологічно активних субстанцій.
Матеріали та методи. Як вихідну речовину використали теофілін. За допомогою реакцій алкілування, гідразинолізу, взаємодією з карбон дисульфідом із наступною гетероциклізацією за участю надлишку гідразин гідрату отримали 7-((4-аміно-5-тіо-1,2,4-тріазол-3-іл)метил)теофілін. Наступні стадії хімічного перетворення включали реакції алкілування галогеналканами, утворення азометинових сполук шляхом взаємодії з ароматичними альдегідами та реакції взаємодії з хлорангідридами ароматичних карбонових кислот. Структура одержаних сполук підтверджена даними елементного аналізу, 1Н ЯМР-спектроскопії та ІЧ-спектрофотометрії. Індивідуальність речовин встановлена за допомогою високоефективної рідинної хроматографії з діодно-матричною та мас-спектрометричною детекцією.
Результати. Синтезували S-алкілпохідні 7-((4-аміно-5-тіо-1,2,4-тріазол-3-іл)метил)теофіліну, основи Шиффа та карбоксаміди, довели їхню будову та дослідили фізичні властивості. Синтезовані сполуки піддали докінговим дослідженням in silico для визначення можливого впливу на кіназу анапластичної лімфоми з використанням ліганда 2XP2, ланостерол 14-α-деметилазу з використанням ліганда 3LD6, циклооксигеназу-2 з використанням ліганда 4Z0L, які отримали з Банку даних білків (РDB).
Висновки. Молекулярний докінг показав можливість синтезованих сполук впливати на активність кінази анапластичної лімфоми, ланостерол 14-α-деметилази та циклооксигенази-2.
Посилання
Biovia. (2019). Discovery Studio Visualizer, v 19.1.0.18287 [Software]. http://www. 3dsbiovia.com/
Boraei, A. T. A., El Ashry, E. S. H., & Duerkop, A. (2016). Regioselectivity of the alkylation of S-substituted 1,2,4-triazoles with dihaloalkanes. Chemistry Central Journal, 10(1), 22. https://doi.org/10.1186/s13065-016-0165-0
ChemAxon. (2015). MarvinSketch, Version 6.3.0. [Software]. http://www.chemaxon.com
El-Shaieb, K. M., Mohamed, A. H., & Abdel-latif, F. F. (2019). Investigation of the reactivity of 4-amino-5-hydrazineyl-4H-1,2,4-triazole-3-thiol towards some selected carbonyl compounds: synthesis of novel triazolotriazine-, triazolotetrazine-, and triazolopthalazine derivatives. Zeitschrift Für Naturforschung B, 74(11-12), 847-855 https://doi.org/10.1515/znb-2019-0140
Backer, M. M. E., McSweeney, S., Lindley, P. F., & Hough, E. (2004). Ligand-binding and metal-exchange crystallographic studies on shrimp alkaline phosphatase. Acta Crystallographica Section D-Structural Biology, 60, 1555-1561. https://doi.org/10.1107/s0907444904015628
Kaur, R., Dwivedi, A. R., Kumar, B., Kumar, V. Recent (2016). Developments on 1,2,4-triazole nucleus in anticancer compounds. Anti-Cancer Agents in Medicinal Chemistry, 16(4), 465-489. https://doi.org/10.2174/ 1871520615666150819121106
Gotsulya, A. S., Panasenko, O. I., Knysh, Ye. G., Knyazevich, P. S. (2015). Synthesis and physical-chemical research of 7-((3-thio-4-R-4H-1,2,4-triazole-5-yl)methyl)theophylline carbonyl derivatives. Zaporozhye Medical Journal, (3), 103-107. https://doi.org/10.14739/2310-1210.2015.3.44510
El-Sherief, H. A. M., Youssif, B. G. M., Abbas Bukhari, S. N., Abdelazeem, A. H., Abdel-Aziz, M., & Abdel-Rahman, H. M. (2018). Synthesis, anticancer activity and molecular modeling studies of 1,2,4-triazole derivatives as EGFR inhibitors. European Journal of Medicinal Chemistry, 156, 774-789. https://doi.org/10.1016/j.ejmech.2018.07.024
Worldwide Protein Data Bank. (n.d.). Protein Data Bank (PDB) [Database]. http://www.pdb.org
Filimonov, D. A., Druzhilovskiy, D. S., Lagunin, A. A., Gloriozova, T. A., Rudik, A. V., Dmitriev, A. V., Pogodin P. V., & Poroikov, V. V. (2018). Komp’yuternoe prognozirovanie spektrov biologicheskoi aktivnosti khimicheskikh soedinenii: vozmozhnosti i ogranicheniya [Computer-aided prediction of biological activity spectra for chemical compounds: opportunities and limitations]. Biomedical Chemistry: Research and Methods, 1(1), e00004. [in Russian]. https://doi.org/10.18097/bmcrm00004
##submission.downloads##
Номер
Розділ
Ліцензія
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).