Prediction of biological activity of spiroquinazolone derivatives as protein kinase inhibitors FGFR1 and CK2


  • O. K. Farat Ukrainian State University of Chemical Technology, Dnipro, Ukraine,
  • S. A. Varenychenko Ukrainian State University of Chemical Technology, Dnipro, Ukraine,
  • V. I. Markov Ukrainian State University of Chemical Technology, Dnipro, Ukraine,



spiroquinazolone derivatives, protein kinase inhibitors, receptor-oriented virtual screening, techniques in vitro, biochemical phenomena



The purpose. The search for FGFR1 and CK2 protein kinase inhibitors were performed among spiroquinazolone derivatives using receptor-oriented virtual screening and in vitro biochemical testing using the human CK2 kinase domain.

Materials and methods. The docking was performed at ATP binding sites for protein kinases CK2 and FGFR1 using the Autodock4 program. The inhibitory activity of the studied compounds against the protein kinase CK2 was determined by the inclusion of a phosphate group-containing radioactive 32P in the peptide substrate when it was phosphorylated by the kinase in the presence of γ-32P-ATP.

Results. Testing results for the selected compounds showed that when added to an IC50 concentration of 10 µM, the protein kinase residual activity was more than 45 %.

Conclusions. The results of the analysis of LogP and LogS indicated that the optimization of spiroquinazolone derivatives should be carried out in the direction of increasing the hydrophobicity of these compounds.



Hernandez, D. C., & Vyas, P. (2019). Oncogenic Drivers and Development. Cancer Discovery, 9(12), 1653-1655.

Obeng, E. A., Stewart, C., & Abdel-Wahab, O. (2019). Altered RNA Processing in Cancer Pathogenesis and Therapy. Cancer Discovery, 9(11), 1493-1510.

Xu, C. C., Li, W. L., Qiu, P. H., Xia, Y. Q., Du, X. J., Wang, F., … Li, X. K. (2015). The therapeutic potential of a novel non-ATP-competitive fibroblast growth factor receptor 1 inhibitor on gastric cancer. Anti-Cancer Drugs, 26(4), 379-387.

Chua, M. M. J., Ortega, C. E., Sheikh, A., Lee, M., Abdul-Rassoul, H., Hartshorn, K. L., & Dominguez, I. (2017). CK2 in Cancer: Cellular and Biochemical Mechanisms and Potential Therapeutic Target. Pharmaceuticals, 10(1), Article Unsp 18.

Andre, F., Arnedos, M., Baras, A. S., Baselga, J., Bedard, P. L., Berger, M. F., … Consortium, A. P. G. (2017). AACR Project GENIE: Powering Precision Medicine through an International Consortium. Cancer Discovery, 7(8), 818-831.

Trembley, J. H., Wu, J. J., Unger, G. M., Kren, B. T., & Ahmed, K. (2013). CK2 suppression of apoptosis and its implication in cancer biology and therapy. Protein kinase CK2 (pp. 319-343)

Ahmed, K., Davis, A. T., Wang, H. M., Faust, R. A., Yu, S. H., & Tawfic, S. (2000). Significance of protein kinase CK2 nuclear signaling in neoplasia. Journal of Cellular Biochemistry, 130-135.

Litchfield, D. W. (2003). Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochemical Journal, 369, 1-15.

Ahmad, K. A., Wang, G. X., Unger, G., Slaton, J., & Ahmed, K. (2008). Protein kinase CK2-A key suppressor of apoptosis. Advances in Enzyme Regulation, Vol 48, 48, 179-187.

Filhol, O., Deshiere, A., & Cochet, C. (2013). Role of CK2 in the control of cell plasticity in breast carcinoma progression. Protein kinase CK2 (pp. 363-382)

Montenarh, M. (2014). Protein Kinase CK2 and Angiogenesis. Advances in Clinical and Experimental Medicine, 23(2), 153-158.

Sarno, S., Papinutto, E., Franchin, C., Bain, J., Elliott, M., Meggio, F., … Pinna, L. A. (2011). ATP Site-Directed Inhibitors of Protein Kinase CK2: An Update. Current Topics in Medicinal Chemistry, 11(11), 1340-1351.

Prykhod'ko, A. O., Dubinina, G. G., Golovach, S. M., Yarmoluk, S. M. (2004). Inhibitory proteinkinazy SK2 [Inhibitors of protein kinase CK2] Ukrainica Bioorganica Acta, (1-2), 39-48. [in Ukrainian].

Chilin, A., Battistutta, R., Bortolato, A., Cozza, G., Zanatta, S., Poletto, G., … Moro, S. (2008). Coumarin as attractive casein kinase 2 (CK2) inhibitor scaffold: An integrate approach to elucidate the putative binding motif and explain structure-activity relationships. Journal of Medicinal Chemistry, 51(4), 752-759.

Lolli, G., Cozza, G., Mazzorana, M., Tibaldi, E., Cesaro, L., Donella-Deana, A., … Pinna, L. A. (2012). Inhibition of Protein Kinase CK2 by Flavonoids and Tyrphostins. A Structural Insight. Biochemistry, 51(31), 6097-6107.

Syniugin, A. R., Ostrynska, O. V., Chekanov, M. O., Volynets, G. P., Starosyla, S. A., Bdzhola, V. G., & Yarmoluk, S. M. (2016). Design, synthesis and evaluation of 3-quinoline carboxylic acids as new inhibitors of protein kinase CK2. Journal of Enzyme Inhibition and Medicinal Chemistry, 31, 160-169.

Golub, A. G., Yakovenko, O. Y., Bdzhola, V. G., Sapelkin, V. M., Zien, P., & Yarmoluk, S. M. (2006). Evaluation of 3-carboxy-4(1H)-quinolones as inhibitors of human protein kinase CK2. Journal of Medicinal Chemistry, 49(22), 6443-6450.

Chekanov, M. O., Ostrynska, O. V., Tarnavskyi, S. S., Synyugin, A. R., Briukhovetska, N. V., Bdzhola, V. G., . . . Yarmoluk, S. M. (2014). Design, synthesis and biological evaluation of 2-aminopyrimidinones and their 6-aza-analogs as a new class of CK2 inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 29(5), 639-646.

Prykhod'ko, A. O., Yakovenko, O. Y., Golub, A. G., Bdzhola, V. G., & Yarmoluk, S. M. (2005). Evaluation of 4H-4-chromenone derivatives as inhibitors of protein kinase CK2. Biopolymers and Cell, 21(3), 287-292.

Chon, H. J., Bae, K. J., Lee, Y., & Kim, J. (2015). The casein kinase 2 inhibitor, CX-4945, as an anti-cancer drug in treatment of human hematological malignancies. Frontiers in Pharmacology, 6, Article 70.

Varenichenko, S. A., Farat, O. K., Markov, V. I. (2013). Sintez novykh proizvodnykh 2-spirokhinazolonov [Synthesis of New Derivatives of 2-Spiroquinazolones]. Voprosy khimii i khimicheskoi tekhnologii, (6), 28-31. [in Russian].

Markov, V. I., & Farat, O. K. (2012). 5',6',7',8'-Tetrahydro-1'H,3'H-spiro cyclohexane-1,2'-quinazolin -4'-one in Mannich reaction. Chemistry of Heterocyclic Compounds, 48(6), 925-930.

Shi, D. X., Qian, D. F., Zhang, Q., & Li, J. R. (2009). Cyclohexanespiro-2'-2',3',6',7'-tetrahydro-1'H-cyclopenta d pyrimidin-4'(5'H)-one. Acta Crystallographica Section E-Crystallographic Communications, 65, O615-U2652.

Upadysheva, A. V., Grigor'eva, N. D., Ryabokobylko, Yu. S., Znamenskaya, A. P. (1983). Recyclization of 2,2-disubstituted 4(3H)-oxo- and 4-chloro-1,2-dihydropyrimidines to 4-aminopyridine derivatives. Chemistry of Heterocyclic Compounds, 19(1), 95-100.

Paleček, J., & Kuthan, J. (1974). Zur N‐Alkylierung von 1,4‐Dihydropyridinderivaten. Zeitschrift Für Chemie, 14(8), 308-309.

Markov, V. I., Farat, O. K., Varenichenko, S. A., Velikaya, E. V., Zubatyuk, R. I., & Shishkin, O. V. (2013). Synthesis and Formylation of Substituted 2-Spiropyrimidin-4-ones and Related Compounds. Chemistry of Heterocyclic Compounds, 49(8), 1158-1165.

Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings (Reprinted from Advanced Drug Delivery Reviews, vol 23, pg 3-25, 1997). Advanced Drug Delivery Reviews, 46(1-3), 3-26.


How to Cite

Farat OK, Varenychenko SA, Markov VI. Prediction of biological activity of spiroquinazolone derivatives as protein kinase inhibitors FGFR1 and CK2. CIPM [Internet]. 2020Mar.10 [cited 2023Dec.9];13(1). Available from:



Original research