Молекулярний докінг і біодоступність S-алкіл похідних 5-(3-флуорофеніл)-, 5-(5-бромофуран-2-іл)- та 5-(((3-(піридин-4-іл)-1H-1,2,4-тріазол-5-іл)тіо)метил)-4-метил-4H-1,2,4-тріазолів in silico методами
DOI:
https://doi.org/10.14739/2409-2932.2020.1.198122Ключові слова:
1, 2, 4-тріазол, молекулярний докінг, віртуальний скринінг, біодоступністьАнотація
Ядро 1,2,4-тріазолу – стійке до метаболізму та важливий фармакофор, може підвищувати розчинність і поліпшувати фармакокінетичний і фармакодинамічний профіль лікарських препаратів. Вітчизняні науковці приділяють багато уваги гетероциклічній системі 1,2,4-тріазолу. Двокомпонентна система, що включає «EC 2.7.13.3 Histidine kinase» та білок регулятора змінної реакції, може мати вирішальне значення для вірулентності деяких грибкових штамів, які часто є причиною виникнення кандидозу в людей з ослабленим імунітетом. Оскільки людині бракує цієї двокомпонентної системи, це може бути хорошою мішенню для протимікробних препаратів під час лікування кандидозу.
Мета роботи – здійснити молекулярний докінг та оцінити біодоступність S-алкіл похідних 5-(3-флуорофеніл)-, 5-(5-бромофуран-2-іл)- та 5-(((3-(піридин-4-іл)-1H-1,2,4-тріазол-5-іл)тіо)метил)-4-метил-4H-1,2,4-тріазолів in silico методами, що перспективні як об’єкти досліджень біологічних властивостей щодо інгібіторів «EC 2.7.13.3 Histidine kinase».
Матеріали та методи. Синтез сполук здійснили за загальновідомою методикою. Віртуальний скринінг сполук виконали за допомогою комп’ютерної програми РАSS. Молекулярний докінг здійснили за допомогою програми Autodock 4.2.6. Скринінг – на кристалографічній структурі ферменту «EC 2.7.13.3 Histidine kinase» (1A0B).
Результати. Аналіз результатів комп’ютерного прогнозу показує перспективність пошуку інгібіторів гістидин кінази, цитидиндезамінази, STAT фактора транскрипції, лужної фосфатази, CYP2C9, інсуліну, ноотропної дії та діуретичної, антитуберкульозної активності у ряду цих сполук. Молекулярний докінг показав високу афінність обраних сполук до ферменту «EC 2.7.13.3 Histidine kinase» з відповідними значеннями. Взаємодія ліганду з активним центром ферменту досить складна та забезпечена в основному Ван-дер-Ваальсовими і π-зв’язками з молекулами води та амінокислотними залишками ферменту. Важливим для зв’язку з ферментом є наявність атома Сульфуру в молекулах сполук, які досліджували. Отже, перспективною є структурна модифікація цього ядра за положенням атома Сульфуру.
Висновки. Дані комп’ютерного прогнозу свідчать про перспективність пошуку серед наведених двох напрямів біорегуляторів, які можуть бути потенційними інгібіторами гістидин кінази та діуретичними агентами. Молекулярний докінг показав високу афінність обраних сполук до ферменту «EC 2.7.13.3 Histidine kinase», що забезпечена Ван-дер-Ваальсовими і π-зв’язками з молекулами води та амінокислотними залишками ферменту.
Посилання
Kaur, R., Kumar, B., Dwivedi, A. R., & Kumar, V. (2016). Regioselective alkylation of 1,2,4-triazole using ionic liquids under microwave conditions. Green Processing and Synthesis, 5(3), 233-237. https://doi.org/10.1515/gps-2015-0138
Parchenko, V. V. (2014). Syntez, peretvorennia, fizyko-khimichni ta biolohichni vlastyvosti v riadi 5-furylzamishchenykh 1,2,4-triazol-3-tioniv (Dis. dokt. farm. nauk). [Synthesis, transformation, physico-chemical and biological properties in the number of 5-furylsubstituted 1,2,4-triazole-3-thiones (Doctoral dissertation)]. Zaporizhzhia State Medical University, Zaporizhzhia. [in Ukrainian].
Parchenko, V. V., Parkhomenko, L. I., Izdepskyi, V. Y., Panasenko, O. I., Knysh Ye. H. (2013). Farmakobiokhimichni kharakterystyky piperedynii 2-(5-furan-2-il)-4-fenil-1,2,4-triazol-3-iltioatsetatu [Pharmacological and biochemical characteristics of piperidine 2-(5-furan-2-yl)-4-phenyl-1,2,4-triazol-3-iltioacetate]. Zaporozhye medical journal, (1), 39-41. [in Ukrainian]. https://doi.org/10.14739/2310-1210.2013.1.15453
Knysh, Ye. H. (1987). Sintez, fiziko-khimicheskie i biologicheskie svoistva N- i S-zameshchennykh 1,2,4-triazola (Dis… dokt. farm. nauk) [Synthesis, physicо-chemical and biological properties of N-and S-substituted 1,2,4-triazole (Doctoral dissertation)]. Khar'kov. [in Russian].
Bhate, M. P., Molnar, K. S., Goulian, M., & DeGrado, W. F. (2015). Signal Transduction in Histidine Kinases: Insights from New Structures. Structure, 23(6), 981-994. https://doi.org/10.1016/j.str.2015.04.002
Adam, K., & Hunter, T. (2018). Histidine kinases and the missing phosphoproteome from prokaryotes to eukaryotes. Laboratory Investigation, 98(2), 233-247. https://doi.org/10.1038/labinvest.2017.118
Parchenko, V. V., Yerokhin, V. Ye., Panasenko, O. I., Knysh Ye. H. (2010). Syntez, peretvorennia, fizyko-khimichni vlastyvosti 4-alkil-, aryl-ta 4-aminopokhidnykh 1,2,4-tryazol-3-tioliv iz zalyshkamy frahmentiv furanu [Synthesis, transformation, physicochemical properties of 4-alkyl-, aryl- and 4-amino-1,2,4-triazole-3-thiols with residues of furan fragments]. Zaporozhye medical journal, 12(4), 83-87. [in Ukrainian].
Parchenko, V. V., Panasenko, O. I., Knish, E. G. (2012). Synthesis, physical and chemical properties of some derivatives 1,2,4-triazolo-(3,4-b)-1,3,4-thiodiazine with residue of fragments of furan. Intellectual Archive, 1(7), 63-72.
Filimonov, D. A., Druzhilovskiy, D. S., Lagunin, A. A., Gloriozova, T. A., Rudik, A. V., Dmitriev, A. V., … Poroikov, V. V. (2018). Komp'yuternoe prognozirovanie spektrov biologicheskoi aktivnosti khimicheskikh soedinenii: vozmozhnosti i ogranicheniya [Computer-aided prediction of biological activity spectra for chemical compounds: opportunities and limitations]. Biomedical Chemistry: Research and Methods, 1(1), e00004. [in Russian]. https://doi.org/10.18097/bmcrm00004
Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. Journal of Computational Chemistry, 30(16), 2785-2791. https://doi.org/10.1002/jcc.21256
de Backer, M. M. E., McSweeney, S., Lindley, P. F., & Hough, E. (2004). Ligand-binding and metal-exchange crystallographic studies on shrimp alkaline phosphatase. Acta Crystallographica Section D-Structural Biology, 60, 1555-1561. https://doi.org/10.1107/s0907444904015628
Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7. https://doi.org/10.1038/srep42717
Ritchie, T. J., Ertl, P., & Lewis, R. (2011). The graphical representation of ADME-related molecule properties for medicinal chemists. Drug Discovery Today, 16(1-2), 65-72. https://doi.org/10.1016/j.drudis.2010.11.002
Lovering, F., Bikker, J., & Humblet, C. (2009). Escape from Flatland: Increasing Saturation as an Approach to Improving Clinical Success. Journal of Medicinal Chemistry, 52(21), 6752-6756. https://doi.org/10.1021/jm901241e
##submission.downloads##
Номер
Розділ
Ліцензія
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).