Заміщені піроло[1,2-а][1,2,4]тріазоло-(тріазино-)[с]хіназоліни – перспективний клас інгібіторів ліпоксигенази

Автор(и)

  • V. V. Stavytskyi Zaporizhzhia State Medical University, Ukraine,
  • I. S. Nosulenko Zaporizhzhia State Medical University, Ukraine,
  • O. O. Portna Zaporizhzhia State Medical University, Ukraine,
  • V. M. Shvets Zaporizhzhia State Medical University, Ukraine,
  • O. Yu. Voskoboynik Zaporizhzhia State Medical University, Ukraine,
  • S. І. Kоvalenko Zaporizhzhia State Medical University, Ukraine,

DOI:

https://doi.org/10.14739/2409-2932.2019.3.198086

Ключові слова:

разработка лекарственных средств, пирроло[1, 2-a][1, 2, 4]триазоло-(триазино-)[c]хиназолины, молекулярный докинг, липоксигеназная активность

Анотація

 

Сучасна стратегія пошуку потенційних біологічно активних молекул заснована на низці інноваційних підходів, серед них на особливу увагу заслуговують методи високоефективного біологічного скринінгу та молекулярного моделювання. Одна з перспективних біологічних мішеней для ряду заміщених піроло[1,2-а][1,2,4]тріазоло-(тріазино-)[с]хіназолінів – ліпоксигеназа (ЛОГ), щодо якої здійснили молекулярний докінг та експериментально дослідили ензим-активувальну активність.

Мета роботи – спрямований пошук потенційних інгібіторів ЛОГ серед невідомих піроло[1,2-a][1,2,4]тріазоло-(тріазино-)[c]хіназолінів, використовуючи молекулярний докінг і високоефективний скринінг in vitro.

Матеріали та методи. Для досліджень обрали ряд заміщених піроло[1,2-a][1,2,4]тріазоло-(тріазино-)[c]хіназолінів. Для молекулярного докінгу та визначення відповідності критеріям «лікоподібності» використали стандартне програмне забезпечення. Дослідження ензим-активувальної активності здійснили на соєвій ЛОГ з використанням натрію ленолінату як субстрату.

Результати. Здійснили докінгове дослідження заміщених піроло[1,2-a][1,2,4]тріазоло-(тріазино-)[c]хіназолінів. З’ясували, що цей клас сполук має суттєву спорідненість до ЛОГ. Визначили основні типи взаємодій з амінокислотними залишками цього ферменту. Дослідження щодо інгібування соєвої ЛОГ показали: серед сполук, що досліджували, найбільш активними були заміщені піроло[1,2-a][1,2,4]тріазино[2,3-c]хіназолінів. Серед них найвищу інгібувальну активність мають сполуки з атомом Флуору та 2-тіенільним фрагментом у молекулі (36,33 % та 39,83 % відповідно). Зі збільшенням ліпофільності здатність похідних тріазину до інгібування соєвої ЛОГ збільшується, а для похідних тріазолу, які мають істотно меншу молекулярну масу, спостерігали зворотну залежність.

Висновки. Обґрунтували та дослідили заміщені піроло[1,2-a][1,2,4]тріазоло-(тріазино-)[c]хіназолінів щодо здатності інгібування соєвої ЛОГ як один із можливих механізмів дії. Їхня ліпоксигеназна активність залежить від ліпофільності та визначається наявністю в молекулі донорно-акцепторних фрагментів, що здатні до утворення водневих зв’язків та інших типів взаємодій. Результати дослідження – вагомий аргумент для вивчення надалі цих сполук як перспективних протизапальних агентів.

Посилання

Krogsgaard-Larsen, P., Liljefors, T., & Madsen, U. (2002). Textbook of Drug Design and Discovery (3rd ed.). Washington, DC: Taylor & Francis.

Keseru, G. M., & Makara, G. M. (2009, Mar). The influence of lead discovery strategies on the properties of drug candidates. Nature Reviews Drug Discovery, 8(3), 203-212. https://doi.org/10.1038/nrd2796

Hajduk, P. J., & Greer, J. (2007). A decade of fragment-based drug design: strategic advances and lessons learned. Nature Reviews Drug Discovery, 6(3), 211-219. https://doi.org/10.1038/nrd2220

Landry, Y., & Gies, J. P. (2008). Drugs and their molecular targets: an updated overview. Fundamental & Clinical Pharmacology, 22(1), 1-18. https://doi.org/10.1111/j.1472-8206.2007.00548.x

Jung, H. J., & Kwon, H. J. (2015). Target deconvolution of bioactive small molecules: the heart of chemical biology and drug discovery. Archives of Pharmacal Research, 38(9), 1627-1641. https://doi.org/10.1007/s12272-015-0618-3

Lee, H., & Lee, J. W. (2016). Target identification for biologically active small molecules using chemical biology approaches. Archives of Pharmacal Research, 39(9), 1193-1201. https://doi.org/10.1007/s12272-016-0791-z

Yakubovska, V. V., Seredinska, N. М., Voskoboynik, О. Yu., Stepanyuk, G. І., & Kovalenko, S. І. (2016). Spriamovanyi poshuk i kharakterystyka protyzapalnoi aktyvnosti natrii (3-R-2-okso-2H-[1,2,4]triazino[2,3-c]khinazolin-6-il)alkilkarboksylativ ta yikh halohenovmisnykh analohiv [Purposeful search and characteristic of anti-inflammatory activity of sodium (3-R-2-оxo-2Н-[1,2,4]triazino[2,3-c]quinazolin-6-yl)alkylcarboxylates and their halogen containing analogues]. Current issues in pharmacy and medicine: science and practice, (1), 60-66. [in Ukrainian]. https://doi.org/10.14739/2409-2932.2016.1.62036

Voskoboynik, O. Yu., Starosyla, S. A., Protopopov, M. V., Volynets, H. P., Shyshkina, S. V., Yarmoliuk, S. M., & Kovalenko, S. I. (2016). Synthesis, anticancer and FGFR1 inhibitory activity of isoindolo[2,1-a][1,2,4]triazino[2,3-c]quinazoline derivatives. Medychna ta klinichna khimiia, 18(1), 5-18. https://doi.org/10.11603/mcch.2410-681X.2016.v0.i1.6123

Voskoboynik O. Yu., Кovalenko S. I., & Shishkina S. V. (2016). 3-R1-8-R2-10-R3-2H-benzo[e][1,2,4]triazino[2,3-c][1,2,3]triazin-2-ones – novel high electro-deficient heterocyclic compounds with promising anticancer activity. Heterocyclic Communications, 22(3), 137-141. https://doi.org/10.1515/hc-2015-0190

Antypenko, O. M., Kovalenko, S. I., Karpenko, O. V., Nikitin, V. O., & Antypenko, L. M. (2016). Synthesis, Anticancer, and QSAR Studies of 2-Alkyl(aryl,hetaryl)quinazolin-4(3H)-thione's and 1,2,4 Triazolo 1,5-c quinazoline-2-thione's Thioderivatives. Helvetica Chimica Acta, 99(8), 621-631. https://doi.org/10.1002/hlca.201600062

Antypenko, O. M., Kovalenko, S. I., Rasulev, B. F., & Leszczynsk, J. (2016). Synthesis of 6-N-R-tetrazolo[1,5-c]quinazolin-5(6H)-ones, anticancer activity and QSAR modeling. Acta Chimica Slovenica, 63(3), 638-645. https://doi.org/10.17344/acsi.2016.2464

Kolomoets, O. S., Voskoboynik, O. Yu., Antypenko, O. M., Berest, G. G., Nosulenko, I. S., Palchikov, V. O., Karpenko, O. V., & Kovalenko, S. I. (2017). Desing, synthesis and anti-inflammatory activity of dirivatives 10-R-3-aryl-6,7-dihydro-2H-[1,2,4]triazino[2,3-c]quinazolin-2-ones of spiro-fused cyclic frameworks. Acta Chimica Slovenica, 64(4), 902-910. https://doi.org/10.17344/acsi.2017.3575

Martynenko Yu. V., Kazunin M. S., Nosulenko I. S., Berest G. G., Kovalenko S. I., Kamyshnyi O. M., & Polishchuk N. M. (2018). 2-([1,2,4]triazolo[1,5-c]quinazoline-2-yl-)alkyl-(alkaryl-, aryl-)-amines and their derivatives. Message 2. The synthesis of (3Н-quinazoline-4-ylidene)hydrazides N-protected aminoacids, using a variety of amine-protecting approaches. Physico-chemical properties and biological activity of the synthesized compounds. Zaporozhye medical journal, 20(3), 413-420. https://doi.org/10.14739/2310-1210. 2018.3.130544

Voskoboynik, O. Yu., Shishkina, S. V., & Kovalenko, S. I. (2018). [1,2,4]Triazino[2,3-с]quinazolines 3. Structure and anticancer activity of products obtained from reaction of 3-(2-aminophenyl)-6-R-1,2,4-triazin-5(2H)-ones with aryl iso(thio)cyanates. Chemistry of Heterocyclic Compounds, 54(7), 717-728. https://doi.org/10.1007/s10593-018-2338-3

Martynenko, Yu. V., Antypenko, O. M., Nosulenko, I. S., Berest, G. G., & Kovalenko, S. I. (2019). Directed search of anti-inflammatory agents among (3H-quinazoline-4-ylidene)hydrazides of N-protected amino acids and their heterocyclization products. Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry, 18(2). 1-12. https://doi.org/10.2174/1871523018666190115092215

Stavitskiy, V. V., Voskoboinik, O. Yu., Nosulenko, I. S., Klimova, O. O., Brazhko, O. A., & Kovalenko, S. I. (2019). Zamisheni 3-R-7,8-digidro-2H-pirolo[1,2-a][1,2,4]triazino[2,3-c]hinazolin-5a(6H)-alkil-karbonovi kysloty - perspektyvnyi klas malotoksychnykh protyzapalnykh ahentiv [Substituted 3-R-7,8-dihydro-2H-pyrrolo[1,2-a][1,2,4]triazino[2,3-c]quinazolin-5a-(6H)-alkyl-carboxylic acids - promising class of low-toxic anti-inflammatory agents] Farmatsevtychnyi chasopys, (3), 5-12. [in Ukrainian]. https://doi.org/10.11603/2312-0967.2019.3.10468

Mashima, R., & Okuyama, T. (2015). The role of lipoxygenases in pathophysiology; new insights and future perspectives. Redox Biology, 6, 297-310. https://doi.org/10.1016/j.redox.2015.08.006

Voskoboinyk, O. Yu., Kovalenko, S. I., Malkova, T. S., & Stavytskyi, V. V. (2018). Pirolo[1,2-a][1,2,4]tryazyno[2,3-c]khinazoliny ta izoindolo[2,1-a][1,2,4]tryazyno[2,3-c]khinazoliny [Pyrrolo [1,2-a] [1,2,4]triazino [2,3-c]quinazolines and isoindolo [2,1-a][1,2,4] triazino [2,3-c] quinazolines]. Ukraine Patent UA 118196. Retrieved from https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=253331 [in Ukrainian].

Worldwide Protein Data Bank. (n.d.). Protein Data Bank (PDB) [Database]. Retrieved from http://www.pdb.org

ChemAxon. (2015). MarvinSketch, Version 6.3.0. [Software]. Retrieved from http://www.chemaxon.com

Trott, O., & Olson, A. J. (2010). Software News and Update AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. Journal of Computational Chemistry, 31(2), 455-461. https://doi.org/10.1002/jcc.21334

Biovia. (2019). Discovery Studio Visualizer, v 19.1.0.18287 [Software]. Retrieved from http://www. 3dsbiovia.com/

Molinspiration Cheminformatics. (n.d.). Calculation of Molecular Properties and Bioactivity Score [Computer software]. Retrieved from http://www.molinspiration.com/cgi-bin/properties

Pontiki, E., & Hadjipavlou-Litina, D. (2007). Synthesis and pharmacochemical evaluation of novel aryl-acetic acid inhibitors of lipoxygenase, antioxidants, and anti-inflammatory agents. Bioorganic & Medicinal Chemistry, 15(17), 5819-5827. https://doi.org/10.1016/j.bmc.2007.06.001

Кorobko, D., Hadjipavlou-Litina, D. J., & Logoyda, L. (2018). Antioxidant and anti-inflammatory properties of a series of new 7,8-disubstituted theophylline containing a pyrazole ring. Asian Journal of Pharmaceutical and Clinical Research, 11(6), 448-450. http://dx.doi.org/10.22159/ajpcr.2018.v11i6.25990

Номер

Розділ

Оригінальні дослідження