Synthesis and physical-chemical properties of functional derivatives of 3-benzyl-8-propylxanthinyl-7-acetic acid
DOI:
https://doi.org/10.14739/2409-2932.2017.2.103521Keywords:
xanthines, organic synthesis, IR-spectroscopy, NMR-spectroscopyAbstract
Introduction. Synthetic research of new biologically active compounds occupies an important place in modern pharmaceutical science.Thus it is important to develop techniques for the biologically active substances functionalization. Esters and amides take special place among the variety of functional derivatives of organic acids,. These fragments are well-known pharmacophores and could be found in a wide range of drugs. Thus, the nootropic agent pyracetam is 2-oxo-1-pyrolidineacetamide, and is the selective antagonist of β-adrenoreceptores; atenolol is a derivative of benzeneacetamide. Substituted acetamide and ester fragments are also present in the structures of aprofen, spasmolitin, acetylidine and β-lactam cephalosporins and penicillins antibiotics.Aim of our research was the synthetic method development for functional derivatives of 3-benzyl-8-propylxanthinyl-7-acetic acid and the study of their physical-chemical properties.Materials and methods. Melting points were determined using capillary method on DMP (M). 1Н NMR-spectra were recorded by Varian Mercury VX-200 device (company «Varian» – USA) solvent – (DMSO-d6), internal standard – ТМS. Elemental analysis of obtained compounds was produced on device Elementar Vario L cube. Chemical shifts were reported in ppm (parts per million) values. Infrared (IR) spectra were measured on a Bruker Alpha instrument using a potassium bromide (KBr) disk, scanning from 400 to 4000 cm-1.
Results and discussion. We selected 3-benzyl-8-propylxanthinyl-7-acetic acid as initial compound for our study. For synthesis of hexyl, heptyl, octyl, nonyl, decyl and benzyl esters of 3-benzyl-8-propylxanthinyl-7-acetic acid we used alternative method, that included alkylation of sodium salts of acids with alkyl halogens. Reaction was made at DMF medium by reflux of reagents. Next stage of our research was the synthesis of amides of 3-beznyl-8-propylxanthinyl-7-acetic acid by the reaction of ethyl or propyl esters with butylamine, benzylamine, p-methylbenzylamine or p-fluorobenzylamine. It should be noted that we conducted reaction without solvent in the medium of amine and reagents were not reflux but heated at 80 оС. The structures of all obtained compounds were proved by the elemental analysis, IR- and 1H NMR-spectroscopy.
Conclusions. Obtained results of our work can be used for further search of biological active compounds among functional derivatives of xanthinyl-7-alkanyl acidsReferences
Orlov, V. D., Lipson, V. V., & Ivanov, V. V. (2005) Medicinskaya khimiya [Medical chemistry]. Kharkiv: Folio. [in Russian].
Lieberman, M., Marks, A., & Smith, C. (2007) Marks' Essential Medical Biochemistry. Lippincott Williams & Wilkins.
Joule, J. A., & Mills, K. (2012) Heterocycles in Nature. Heterocyclic Chemistry at a Glance. (P. 158–166). Chichester: John Wiley & Sons, Ltd.
Joule, J. A., & Mills, K. (2012) Heterocycles in Medicine. Heterocyclic Chemistry at a Glance. (P. 167–179). Chichester: John Wiley & Sons, Ltd.
Müller, C. E., Sandoval-Ramírez, J., Schobert, U., Geis, U., Frobenius, W., & Klotz, K. N. (1998) 8-(Sulfostyryl)xanthines: water-soluble A2A-selective adenosine receptor antagonists. Bioorganic & Medicinal Chemistry, 6, 707–719. https://doi.org/10.1016/S0968-0896(98)00025-X.
Mohamed, T., Osman, W., Tin, G., & Rao, P. N. (2013) Selective inhibition of human acetylcholinesterase by xanthine derivatives: In vitro inhibition and molecular modeling investigations. Bioorganic & Medicinal Chemistry Letters, 23, 4336–4341. doi: 10.1016/j.bmcl.2013.05.092.
Mak, G., & Hanania, N. A. (2012) New bronchodilators. Curr. Op. Pharmacol., 12, 238–245.
Song, B., Xiao, T., Qi, X., Li, L. N., Qin, K., Nian, S., et al. (2012) Design and synthesis of 8-substituted benzamido-phenylxanthine derivatives as MAO-B inhibitors. Bioorganic & Medicinal Chemistry Letters, 22, 1739–1742. doi: 10.1016/j.bmcl.2011.12.094.
Mikhalchenko, E. K., Aleksandrova, E. V., Levich, S. V., & Sinchenko, D. M. (2017) Synthesis and physicochemical properties of 3-benzyl-8-propylxanthinyl-7-acetic acid and its derivatives. Current issues in pharmacy and medicine: science and practice, 1, 14–19. doi: 10.14739/2409-2932.2017.1.93430.
Downloads
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access)