Study of the effect of sodium 2-((4-amino-5-(thiophen-2-ylmethyl)-4H-1,2,4-triazole-3-yl)thio)acetate toxic doses on rats heart tissue

A. A. Safonov*, O. I. Panasenko, N. A. Al Khalaf

Zaporizhzhia State Medical and Pharmaceutical University, Ukraine

A – research concept and design; B – collection and/or assembly of data; C – data analysis and interpretation; D – writing the article; E – critical revision of the article; F – final approval of the article

Analysis of medicinal product safety is an important stage on the way to the entry of a synthetic compound into the pharmaceutical market. Along with the study of blood composition, scientists are actively analyzing the effect of toxic doses on the tissues of internal organs. Analyzing the toxic effect of compounds on heart tissue allows us to find out what damage substances can cause, which can have a direct impact on human health. Today, 1,2,4-triazole derivatives are very relevant and a huge number of publications is a confirmation of this.

The aim of the work was to analyze the effect of toxic doses of sodium 2-((4-amino-5-(thiophen-2-ylmethyl)-4H-1,2,4-triazole-3-yl)thio)acetate on rats heart tissue.

Materials and methods. Sodium 2-((4-amino-5-(thiophen-2-ylmethyl)-4H-1,2,4-triazole-3-yl)thio)acetate (ASP) was selected as the subject of investigation and administered intragastrically in the form of a suspension with purified water using a specialized metal probe. The toxic effect on tissues was analyzed using doses of 1000 mg/kg, which is 10 times higher than a single dose typically used in pharmacological activity studies, and 5000 mg/kg, which represents the limit for determining acute toxicity and the maximum dose within the fourth class of toxicity, considering the route of administration, provided that this dose does not result in the death of the animal.

Analysis of the effect of toxic doses of ASP was performed on 12-month-old purebred male rats kept under standard conditions. Rat heart tissues were fixed for further histological examination in a 10 % formaldehyde solution, dehydrated in alcohols of increasing strength, and embedded in paraffin.

Results. Macroscopic and microscopic analysis of rat heart tissue was carried out. The research shows the histological results of deviations from the norm for a group of rats that were injected with substances in the studied doses.

Conclusions. The effect of toxic doses of ASP on rat heart tissue was analyzed. For a dose of 1000 mg/kg, local signs of protein dystrophy of cardiomyocytes and single loci of hemorrhages are observed. As for the dose of 5000 mg/kg, the effect of the substance on the heart tissue is more profound and is determined by the selective damage of cardiomyocytes with the loss of lumbar striation and the acquisition of a wave-like shape, full blood is observed in the ectasized capillaries.

Keywords: 1,2,4-triazole, rats, heart tissue, toxic action.

Current issues in pharmacy and medicine: science and practice. 2024;17(2):150-153

Дослідження впливу токсичних доз 2-((4-аміно-5-(тіофен-2-ілметил)-4H-1,2,4-триазол-3-іл)тіо)ацетату на тканину серця щурів

А. А. Сафонов, О. І. Панасенко, Н. А. Аль Халаф

Аналіз безпечності лікарського засобу є важливим етапом на шляху синтетичної сполуки до фармацевтичного ринку. Разом із дослідженням складу крові, вчені активно аналізують вплив токсичних доз на тканини внутрішніх органів. Аналіз токсичного впливу сполук на тканини серця дає змогу з’ясувати, які пошкодження можуть викликати речовини, опосередковано впливаючи на здоров’я людини. Нині похідні 1,2,4-триазолу залишаються актуальним об’єктом дослідження, що підтверджено величезною кількістю публікацій.

Мета роботи – аналіз впливу токсичних доз 2-((4-аміно-5-(тіофен-2-ілметил)-4H-1,2,4-триазол-3-іл)тіо)ацетату на тканини серця щурів.

Матеріалі і методи. Як об’єкт дослідження використано 2-((4-аміно-5-(тіофен-2-ілметил)-4H-1,2,4-триазол-3-іл)тіо)ацетат (ASP), який вводили внутрішньошлунково у формі суспензії з очищеною водою за допомогою спеціального металевого зонда. Для аналізу токсичного впливу на тканини обрало дози 1000 мг/кг (це вдесятеро перевищує разову дозу, що рекомендована під час вивчення фармакологічної активності досліджуваної сполуки) та 5000 мг/кг (граничний показник для визначення гострої токсичності і максимальна доза четвертого класу токсичності, враховуючи шляхи введення, якщо ця доза не призводить до смерті тварин).

Current issues in pharmacy and medicine: science and practice. 2024;17(2):150-153

Keywords: 1,2,4-triazole, rats, heart tissue, toxic action.

*E-mail: 8safonov@gmail.com

Received: 11.03.2024 // Revised: 28.03.2024 // Accepted: 05.04.2024
According to statistics from the World Health Organization, cardiovascular diseases have been the leading cause of death for over 20 years. The heart is one of the main life-sustaining organs of a person. Along with other organs, the heart is a “target organ” and, therefore, is mandatory for research [1]. Analyzing the toxic effect of compounds on heart tissue allows us to find out what damage substances can cause, which can have a direct impact on human health.

1,2,4-Triazole derivatives can be chosen among the new substances that can become medicines in the future. Today, they are very relevant and a huge number of publications is a confirmation of that [2,3,4,5,6,7,8,9]. Scientists from all over the world are working on the development of substances [10,11,12,13,14].

Analysis of the safety of a medicinal product is an important stage on the way to the entry of a synthetic compound into the pharmaceutical market [15]. Along with the study of blood composition, scientists are actively analyzing the effect of toxic doses on the internal organs tissues.

Aim

Thus, the aim of the study is to analyze the effect of toxic doses of sodium 2-((4-amino-5-(thiophen-2-ylmethyl)-4H-1,2,4-triazole-3-yl)thio)acetate on rats heart tissue.

Material and methods

Sodium 2-((4-amino-5-(thiophen-2-ylmethyl)-4H-1,2,4-triazole-3-yl)thio)acetate (ASP) [16] was used as the object of study and administered intragastrically in the form of a suspension with purified water using a special metal probe. It was chosen for doses of 1000 and 5000 mg/kg (the limiting indicator for determining acute toxicity is the maximum dose of the fourth class of toxicity (low-toxic substances), taking into account the route of administration).

Analysis of the effect of ASP toxic doses was performed on white outbred male rats aged 12 months, which were kept in standard conditions. The rats heart tissue was fixed for further histological examination in 10 % formaldehyde solution, dehydrated in alcohols of increasing strength, poured into paraffin. Analysis of micropreparations was performed under a Granum light microscope.

Results

At the beginning of the study, the heart of the studied group of animals was weighed, the weight of which was 0.9–1.1 g. For the control group, it was 1.0–1.1 g. Macroscopically, for both groups of animals, the heart was red-purple, densely elastic, coronary vessels full-blooded, with a clear visual course. When the incision is made in the cavities of the ventricles, blood is detected, the walls of the myocardium are red without macroscopic pathology. The atrium is visually without dilatation, a typical configuration (Fig. 1).

With a more detailed microscopic analysis of the experimental group (1000 mg/kg) of rats, the following was found: zones of disorganization of cardiomyocytes with preservation of the lamellar striation of myofibrils are identified in the myocardium, the cytoplasm of many cells is eosinophilic, deep. Individual loci of subendocardial hemorrhages are determined. The symplastic structure is not preserved, local signs of protein dystrophy of cardiomyocytes, the fine capillary net is ectsazised (Fig. 2).

A pathomorphological study of rats’ hearts (the group – 5000 mg/kg) was also carried out. The histological structure of the myocardium is disturbed due to the disorganization of cardiomyocytes, which acquire a wave-like structure, the zones of cardiomyocytes with the loss of the lamellar striation of myofibrils are determined, the cytoplasm is eosinophilic, deep, homogeneous in places. The symplastic structure is disturbed, nuclei in a state of karyopyknosis and karyolysis are determined in individual cardiomyocytes. Histological manifestations of intercellular edema, small capillary net ectsazised, full-blooded, zones of erythrodiaspesis (Fig. 3).

Studying heart tissues of the control group revealed: cardiomyocytes of typical sizes. It should be noted that the transverse striation and symplastic structure are preserved in all cells, the nuclei are typical sizes, oval in shape, basophilic have 1–2 nucleoli (Fig. 4). Pacemaker cells of the conducting system of the heart have typical histological structure, rounded shape, with light oxyphilic cytoplasm and a centered nucleus. The capillary net of the myocardium has collapsed, endothelialcytes have a typical histological structure, and single erythrocytes are identified in the lumen. The endocardium has a typical hist-
tological structure, consisting of one layer of endotheliocytes, single connective tissue fibers are determined along the course of cardiomyocytes and around large main vessels.

Discussion

It should be noted that the studied substance ASP affects heart tissue if the data is compared with the control group of rats. It was also established that at a dose of 5000 mg/kg, there is a loss of lumbar striated myofibrils. In the control group, transverse striation and symplastic structure were preserved in all cells. But, despite this, all the functions of the heart muscle are preserved.

Summarizing the obtained data, it can be concluded that in high doses, the substance begins to have a toxic effect on the heart tissues, and with an increase in the dose, the damage is greater, which is natural. But these damages do not lead to the death of the animal.
Conclusions

1. The effect of toxic doses (1000 mg/kg, 5000 mg/kg) of sodium 2-((4-amino-5-(thiophen-2-ylmethyl)-4H-1,2,4-triazole-3-yl)thio)acetate on rat heart tissue was analyzed.
2. For a dose of 1000 mg/kg, local signs of protein dystrophy of cardiomyocytes and single loci of hemorrhages are observed.
3. As for the maximum dose of the fourth class of toxicity (5000 mg/kg), the effect of the substance on the heart tissue is more profound and is determined by the selective damage of cardiomyocytes with the loss of lumbar striation and the acquisition of a wave-like shape, full blood is observed in the ectasized capillaries.

Conflicts of interest: authors have no conflict of interest to declare.

Information about the authors:
Safonov A. A., PhD, Associate Professor of the Department of Toxicological and Inorganic Chemistry, Zaporizhzhia State Medical and Pharmaceutical University, Ukraine. ORCID ID: 0000-0003-2861-1826
Panasenko O. I., PhD, DSc, Professor, Head of the Department of Toxicological and Inorganic Chemistry, Zaporizhzhia State Medical and Pharmaceutical University, Ukraine. ORCID ID: 0000-0002-6102-3455
Ali Khalaf N. A., PhD, Senior Lecturer of the Department of Toxicological and Inorganic Chemistry, Zaporizhzhia State Medical and Pharmaceutical University, Ukraine. ORCID ID: 0000-0002-2915-6055

References