The aim of this work is to determine the qualitative and quantitative characteristics of biologically active compounds of Artemisia pontica L. Definition prospects of medicinal herbal raw materials in the treatment of diseases.

Materials and methods. Research material (Artemisia pontica L. herb) was collected in August 2019 in the Zaporizhzhia region, Ukraine. The tincture was obtained by maceration. So, the tincture was being extracted with methyl alcohol at room temperature for 10 days. The tincture was extracted with methyl alcohol at room temperature for 10 days according to the method of preparing tinctures. The study of the chemical composition of tincture of Artemisia pontica L. was carried out using gas chromatograph Agilent 7890B GC System (Agilent, Santa Clara, CA, USA) with mass spectrometric detector Agilent 5977 BGC/MSD (Agilent, Santa Clara, CA, USA) and chromatographic column DB-5ms (30 m × 250 mkm × 0.25 mkm).

Results. 26 compounds were identified by analysis. Compounds such as n-hexadecanoic acid (16.71 %), 9,12,15-(Z,Z,Z)-octadecatrienoic acid (13.29 %), 2-(4a,8-dimethyl-7-oxo-1,2,3,4,4a,7-hexahydronaphthalen-2-yl)-propionic acid (8.80 %), 8-nitro-(1H)quinolin-4-ol-2-one (6.45 %) and neophytadiene (4.66 %) prevail in tincture. A literature review showed that n-hexadecanoic acid stimulates anti-inflammatory processes in human immune cells through TLR4 receptors, it has antitumor and antidiabetic activity and it also has anti-inflammatory effects. Derivatives of 9,12,15-(Z,Z,Z)-octadecatrienoic acid are used in diabetes therapy. 2-(4a,8-Dimethyl-7-oxo-1,2,3,4,4a,7-hexahydronaphthalen-2-yl)-propionic acid is an immunosuppressant and probably improves tissue insulin sensitivity. In addition, it is necessary to underline the presence of neophytadiene that has an anti-inflammatory effect. The presence of β-phellandrene provides insecticidal and eucalyptol anti-inflammatory effects.

Conclusions. Considering the individual actions of the individual components, Artemisia pontica L. herb can be recommended for further research on its anti-inflammatory, antidiabetic, and antitumor effects.

Key words: Artemisia pontica, chromatomoass spectroscopy, component composition, quantitative content.

Current issues in pharmacy and medicine: science and practice 2021; 14 (1), 23–28
The genus Artemisia L. includes more than 400 species that belong to the Asteraceae family. *Artemisia pontica* L. is a shrub with a height of 40–100 cm with a creeping rhizome and a lignified stem in the lower part, densely leafy from the middle and above [1].

This is an ornamental plant. It is distributed mainly in the southern part of Central and Eastern Europe. In Ukraine, *Artemisia pontica* L. is found in Mykolaiv, Odesa, and Zaporizhzhia regions. It grows in dry meadows, clearings, forest edges, and the steppes [2].

It is used in medicine as an antiseptic for the oral cavity (Maraslaw, Bulgaria). Research data revealed the presence of anti-inflammatory, analgesic, wound healing, antimicrobial effects [3, 4].

Artemisia pontica L. was previously cultivated as a spicy-aromatic plant in Western Europe and North America. Although *Artemisia pontica* L. is grown as an ornamental plant in gardens, it can also be used as feed for small livestock, horses, and camels [5].

There are evident facts that plants of the genus *Artemisia* L. have anthelmintic, antibacterial, antifungal, repellent, narcotic [6–8], antioxidant [9–11] properties. However, they also have toxic effects [6, 12].

Despite the potential perspective of using this plant in medicine, the chemical composition of *Artemisia pontica* L. populations that grow in Ukraine is not well investigated. Before the research of the chemical composition of the herb *Artemisia pontica* L. was conducted.

* Aim
To determine the qualitative and quantitative characteristics of biologically active compounds of *Artemisia pontica* L. Definition prospects of medicinal herbal raw materials in the treatment of diseases.

* Materials and methods
** Plant materials.** Research material (*Artemisia pontica* L. herb) was collected in August 2019 in the Zaporizhzhia region. Herbarium samples were deposited at the herbarium of the Faculty of Pharmacy of Zaporizhzhia State Medical University.

** Extraction.** According to the general method of preparing tinctures, the tincture was obtained by maceration. The tincture was being extracted with methyl alcohol at room temperature for 10 days [13]. Then 0.1 ml of tincture was placed in a 1 ml micro flask and was brought with methanol to 0.5 ml.

** Equipment.** The completeness of the reactions and the individuality of the resulting compounds were controlled by the gas chromatograph Agilent 7890B with a 5977B mass spectrometry detector. The column was DB-5ms 30 m × 250 μm × 0.25 μm with length. The gas-carrier speed (helium) was 1.6 ml/min. Injection volume was 0.5 μl. The separation of the flow was 1:50. The temperature of the sampling unit was 230 °C → 12 °C/s → 275 °C. Thermostat temperature: programmable, 240 °C (1-minute
delay) → 5 °C/min → 280 °C (1-minute delay). The total time of examination were 10 min. Temperature of interface GS/MS – 280 °C; ion sources – 230 °C; quadrupole mass analyzer – 150 °C. Type of ionization: EI with an electron energy of 70 eV. The range of mass numbers that was scanned: 30–500 m/z.

Results
It was found that the methanol tincture of *Artemisia pontica* L. contains 26 different components. Among them, it was identified: 5 fatty acids (41.24 %), terpenoids of different classes –16 (29.83 %), heterocyclic compounds – 2 (7.67 %), alkenes – 1 (6.33 %), triterpenes of carboxylic acids – 1 (1.23 %), cycloalkane alcohol – 1 (0.89 %).

Compounds such as N-hexadecanoic acid (16.71 %), 9,12,15-(Z,Z,Z)-octadecatrienoic acid (13.29 %), 2-(4a,8-dimethyl-7-oxo-1,2,3,4,4a,7-hexahydrophthalen-2-yl)-propionic acid (8.80 %), 8-nitro-(1H)quinolin-4-ol-2-one (6.45 %) and neophytadiene (4.66 %) are quantitatively prevail among the total content of all components.

The results of the study are in Table 1.

Such components as n-hexadecanoic acid with a retention time of 16.27 min and 9,12,15-(Z,Z,Z)-octadecatrienoic acid (RT = 17.917 min) were identified on chromatogram of the components of *Artemisia pontica* L. (Fig. 1).

Discussion
The populations of *Artemisia pontica* L. that grow on the territory of Ukraine differ significantly from the populations of other countries in chemical composition. The main active ingredients of the Kazakhstan fraction are flavonoids 7-O-methyl- and 4',7-di-O-methyl-esters of apigenin [14], while the Ukrainian fraction is dominated by fatty acids. Regarding the study of the component composition of water extracts of other Arte-

<table>
<thead>
<tr>
<th>RT, min</th>
<th>Compound Label</th>
<th>Area Sum %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>β-phellandrene</td>
<td>3.69</td>
</tr>
<tr>
<td>2.</td>
<td>Eucalyptol</td>
<td>3.37</td>
</tr>
<tr>
<td>3.</td>
<td>2-methyl-5-(1-methylethyl)-(1α, 2β, 5α)-bicyclo[3.1.0]hexan-2-ol</td>
<td>0.95</td>
</tr>
<tr>
<td>4.</td>
<td>(1R,4R,5S)-1-isopropyl-4-methoxy-4-methylbicyclo[3.1.0]hexane</td>
<td>1.37</td>
</tr>
<tr>
<td>5.</td>
<td>endo-borneol</td>
<td>1.25</td>
</tr>
<tr>
<td>6.</td>
<td>L-α-terpineol</td>
<td>1.1</td>
</tr>
<tr>
<td>7.</td>
<td>1-deoxy-inositol</td>
<td>0.89</td>
</tr>
<tr>
<td>8.</td>
<td>Caryophyllene oxide</td>
<td>1.22</td>
</tr>
<tr>
<td>9.</td>
<td>Quinic acid</td>
<td>1.23</td>
</tr>
<tr>
<td>10.</td>
<td>Neointermedeol</td>
<td>1.26</td>
</tr>
<tr>
<td>11.</td>
<td>Chamazulene</td>
<td>1.26</td>
</tr>
<tr>
<td>12.</td>
<td>Tetradecanoic acid</td>
<td>0.92</td>
</tr>
<tr>
<td>13.</td>
<td>1-heptatriacotanol</td>
<td>1.71</td>
</tr>
<tr>
<td>14.</td>
<td>Neophytadiene</td>
<td>4.66</td>
</tr>
<tr>
<td>15.</td>
<td>Phytol, acetate*</td>
<td>1.21</td>
</tr>
<tr>
<td>16.</td>
<td>Phytol, acetate*</td>
<td>1.91</td>
</tr>
<tr>
<td>17.</td>
<td>8-nitro-(1H)quinolin-4-ol-2-one</td>
<td>6.45</td>
</tr>
<tr>
<td>18.</td>
<td>n-hexadecanoic acid</td>
<td>16.71</td>
</tr>
<tr>
<td>19.</td>
<td>4-(3-mercapto-4-methyl-5-(4H-1,2,4-triazolyl)))-pyridine</td>
<td>1.22</td>
</tr>
<tr>
<td>20.</td>
<td>2-(4a,8-dimethyl-7-oxo-1,2,3,4,4a,7-hexahydrophthalen-2-yl)-propionic acid</td>
<td>8.8</td>
</tr>
<tr>
<td>21.</td>
<td>Phytol</td>
<td>4.4</td>
</tr>
<tr>
<td>22.</td>
<td>9,12-(Z,Z)-octadecadienoic acid</td>
<td>1.52</td>
</tr>
<tr>
<td>23.</td>
<td>9,12,15-(Z,Z,Z)-octadecatrienoic acid</td>
<td>13.29</td>
</tr>
<tr>
<td>24.</td>
<td>2,6,10,15,19,23-(all-E)-hexamethyl-1,6,10,14,18,22-tetracosahexaen-3-ol</td>
<td>2.07</td>
</tr>
<tr>
<td>25.</td>
<td>1-heptatriacotanol</td>
<td>2.5</td>
</tr>
<tr>
<td>26.</td>
<td>17-pentatriacontene</td>
<td>1.67</td>
</tr>
</tbody>
</table>

*: these compounds are believed to be isomers.
The herb of *Artemisia pontica* L. is a source of biologically active substances that have anti-inflammatory, antidiabetic and antitumor effects.

Conclusions

1. For the first time the qualitative and quantitative composition of the components of the *Artemisia pontica* L. herb that grows in Ukraine was established by using a gas chromatogram;

2. It was identified 26 components that belong to different classes of biologically active compounds;

3. The quantitative content was dominated by n-hexadecanoic acid (16.71 %), 9,12,15-(Z,Z,Z)-octadecatrienoic acid (13.29 %), 2-(4a,8-dimethyl-7-oxo-1,2,3,4,4a,7-hexahydropyran-2-yl)-propionic acid (8.80 %), 8-nitro-(1H)-quinolin-4-ol-2-one (6.45 %), and neophytadiene (4.66 %). Considering their biological effect, the studied raw materials can be recommended for further studies on anti-inflammatory, antidiabetic, and antitumor effects.

Prospects for further research. The herb of *Artemisia pontica* L. can be recommended for further studies due to its anti-inflammatory, antidiabetic and antitumor effects.

Funding

The research is an integral part of the joint complex work of Department of Pharmacognosy, Pharmacology and Botany of Zaporizhzhia State Medical University.

Conflicts of interest: authors have no conflict of interest to declare.

Information about authors:

Panasenko O. I., Dr. hab., Professor, Head of the Department of Natural Sciences for Foreign Students and Toxicological Chemistry, Zaporizhzhia State Medical University, Ukraine.

ORCID ID: 0000-0002-6102-3455

Mozul V. I., PhD, Associate Professor of the Department of Pharmacognosy, Pharmacology and Botany, Zaporizhzhia State Medical University, Ukraine.

Denysenko O. M., PhD, Associate Professor of the Department of Pharmacognosy, Pharmacology and Botany, Zaporizhzhia State Medical University, Ukraine.
References

