Synthesis and structure of salts of 2-(((3-mercapto-5-methyl-4H-1,2,4-triazole-4-yl)imino)methyl)benzoic acid

T. V. Hlazunova*
Zaporizhzhia State Medical University, Ukraine

Modern pharmacy and medicine can offer a substantial number of highly effective synthetic medicines. A great portion of these medicines falls into the group of 1,2,4-triazole derivatives.

1,2,4-Triazoles are distinguished by important pharmacological properties, including antimicrobial, antifungal, anti-inflammatory, hypoglycemic, while also being capable of stimulating the central nervous system. Undoubtedly, a constant increase of number of publications regarding the synthesis, characterization of biological, chemical, and physical properties of 1,2,4-triazole derivatives by both foreign and Ukrainian researchers promotes the search for promising compounds of this class of heterocyclic compounds globally.

The purpose of our work was to synthesize and characterize structures of salts of 2-(((3-mercapto-5-methyl-4H-1,2,4-triazole-4-yl)imino)methyl)benzoic acid, as potentially bioactive compounds.

Materials and methods. The physical-chemical characterization of the synthesized compounds was conducted according to the guidelines provided by the State Pharmacopoeia of Ukraine. The melting point was determined using MPA100 apparatus. Elemental analysis was held using Elementar Vario L.cube analyzer. 1H NMR spectra were recorded using Varian Mercury VX-200 spectrometer (1H, 200 MHz). Chromatographic and mass-spectrometric data were obtained using Agilent 1260 Infinity LC system coupled with Agilent 6120 mass spectrometer.

Results and discussion. 2-(((3-Mercapto-5-methyl-4H-1,2,4-triazole-4-yl)imino)methyl)benzoic acid was used as the starting compound for the synthesis of the new structures. In order to afford the desired compounds, the starting material was subjected to salt formation reactions with ammonium hydroxide, sodium and potassium hydroxides, methylamine, ethylamine, dimethylamine, 1-propylamine, 2-propylamine, monoethanolamine, diethyamine, tert-butylamine, piperidine, piperazine, morpholine, 2-methylpiperidine, and 4-methylmorpholine whether in alcohol or water solutions.

Conclusions. The chemical experiments resulted in 16 new substances, salts of 2-(((3-mercapto-5-methyl-4H-1,2,4-triazole-4-yl)imino)methyl)benzoic acid. The chemical structure of the synthesized compounds was confirmed using instrumental methods, including 1H NMR spectroscopy, LC-MS, and elemental analysis. The obtained salts will be used in further pharmacological research.
1,2,4-Триазоловые производные обладают широким спектром полезных фармацевтических свойств: противомикробной, противогрибковой, противовоспалительной, гипогликемической активностью, являются стимуляторами ЦНС [2,4,9]. Соединения 1,2,4-триазола отличаются важными фармакологическими свойствами: противомикробной, противогрибковой, противовоспалительной, гипогликемической активностью, являются стимуляторами ЦНС [2,4,9].

Синтез и структура 2-((3-меркапто-5-метил-4H-1,2,4-триазол-4-ил)имино)метил)бензойной кислоты

Т. В. Глазунова

Современная фармация и медицина имеют в своем арсенале достаточно много высокоэффективных лекарственных средств синтетического происхождения. Значительная часть таких средств – производные 1,2,4-триазола.

Соединения 1,2,4-триазола отличаются важными фармакологическими свойствами: противомикробной, противогрибковой, противовоспалительной, гипогликемической активностью. Высокая стоимость синтезированных соединений является значимым фактором при поиске новых синтетических препаратов.

В результате исследования химическим путем получены 16 новых веществ, солей 2-((3-меркапто-5-метил-4H-1,2,4-триазол-4-ил)имино)метил)бензойной кислоты. Химическая структура синтезированных соединений подтверждена комплексом современных методов анализа: ЯМР-спектроскопией, LS/MS и элементного анализа. Синтезированные соли будут использованы в дальнейших фармакологических исследованиях.

Результаты. Как исходное вещество для синтеза новых структур использована 2-((3-меркапто-5-метил-4H-1,2,4-триазол-4-ил)имино)метил)бензойная кислота. Поставлены реакции солеобразования исходного соединения с гидроксидами аммония, гидроксидами натрия и калия, метиламином, этиламином, диметиламином, трет-бутиламином, пиперазином, пиперидином, морфолином, 2-метилпиперидином, 4-метилморфолином в спиртовых или водных средах.

Выходы. В результате исследования химическим путем получены 16 новых веществ, солей 2-((3-меркапто-5-метил-4H-1,2,4-триазол-4-ил)имино)метил)бензойной кислоты. Химическая структура синтезированных соединений подтверждена комплексом современных методов анализа: ЯМР-спектроскопией, LS/MS и элементного анализа. Синтезированные соли будут использованы в дальнейших фармакологических исследованиях.

Ключевые слова: синтез, 1,2,4-триазол, физико-химические свойства.

Актуальные вопросы фармацевтической и медицинской науки и практики. 2020. Т. 13, № 1(32). С. 17–22

Nowadays pharmaceutical and medical developments have made available numerous highly effective synthetic medicinal products. Many of such molecules contain 1,2,4-triazole moiety [1–4].

As demonstrated by the increasing number of scientific publications regarding the 1,2,4-triazole moiety, this research direction holds significant promise [5–7]. This class of organic compounds has sparked interest among researchers working in the fields of medicine, pharmaceutics, and veterinary practice [2,6], while it is attractive for specialists working in agriculture [8]. Apart from that, 1,2,4-triazole derivatives are used as dyes, antioxidant agents, some of them have applications as corrosion inhibitors, and others are utilized as pesticides [4].

1,2,4-Triazole derivatives possess a range of useful pharmacological properties, such as antimicrobial, antifungal, anti-inflammatory, hypoglycemic, and act as central nervous system (CNS) stimulants [2,4,9].

The number of publications devoted to synthesis as well as biological and physical-chemical characterization of 1,2,4-triazoles by foreign and Ukrainian researchers is growing, which promotes the search for promising heterocyclic compounds, including 1,2,4-triazoles [10–13].

Aim

The purpose of our work was to synthesize and characterize structures of salts of 2-((3-mercapto-5-methyl-4H-1,2,4-triazole-4-yl)imino)methyl)benzoic acid, as potentially bioactive compounds.

Materials and methods

The chemical reagents were obtained from “Ukrorgsyntez Ltd (UOS)” with all quality documentation. The physical-chemical characterization of the synthesized compounds was conducted...
according to the guidelines provided by the State Pharmacopoeia of Ukraine (SPU). The melting point was determined using MPA100 apparatus (Automated melting point system, USA). Elemental analysis was held using Elementar Vario L.cube analyzer (Germany). 1H NMR spectra were recorded using Varian Mercury VX-200 spectrometer (1Н, 200 MHz) (USA) with dimethyl sulfoxide-d_6 as the solvent and tetramethylsilane as the internal standard; spectra were interpreted using SpinWorks software. Chromatographic and mass-spectrometric data were obtained using Agilent 1260 Infinity LC system (USA) coupled with Agilent 6120 mass spectrometer equipped with an electrospray ionization source (ESI) [14–16].

Results

As the starting material 2-(((3-mercapto-5-methyl-4H-1,2,4-triazole-4-yl)imino)methyl)benzoic acid 1.1 (Fig. 1) was used. This compound was synthesized by us [3].

Compound 1.1 was reacted with ammonium hydroxide, sodium and potassium hydroxides, methylamine, ethylamine, dimethylamine, n-propylamine, i-propylamine, monoethanolamine, diethyamin, tert-butylamine, piperidine, piprazine, morpholine, 2-methylpiperidine, and 4-methylmorpholine whether in alcohol or water solutions to obtain the corresponding salts 2.1–2.16 (Fig. 2).

Experimental

Ammonium salt of 2-(((3-mercapto-5-methyl-4H-1,2,4-triazole-4-yl)imino)methyl)benzoic acid. 1.1

40 mL of 25 % ammonia in water was added to 0.01 moles of 2-(((3-mercapto-5-methyl-4H-1,2,4-triazole-4-yl)imino)methyl)benzoic acid (1.1), then the mixture was stirred until the substance was dissolved. The obtained solution was filtered and evaporated. The compound was obtained in a form of green crystals. For analytical purposes, the compound was recrystallized from n-butanol.

Sodium and potassium salts of 2-(((3-mercapto-5-methyl-4H-1,2,4-triazole-4-yl)imino)methyl)benzoic acid. 2.2, 2.3

0.01 moles of 2-(((3-mercapto-5-methyl-4H-1,2,4-triazole-4-yl)imino)methyl)benzoic acid (1.1) were dissolved in 50 mL of water, added 0.01 moles of whether sodium hydroxide or potassium hydroxide. The mixture was stirred with heating until substance dissolution. The obtained solutions were filtered and evaporated. For analytical purposes, the compounds were recrystallized from n-butanol (2.2) and methanol (2.3).

Methylammonium, ethylammonium, dimethylammonium, n-propylammonium, i-propylammonium, monoethanolamine, diethyamin, tert-butylamine, piperidine, piprazine, morpholine, 2-methylpiperidine, and 4-methylmorpholine.

0.01 moles of 2-(((3-mercapto-5-methyl-4H-1,2,4-triazole-4-yl)imino)methyl)benzoic acid (1.1) were dissolved in 30 mL of water i-propanol added 0.01 moles of methylamine, ethylamine, dimethylamine, n-propylamine, i-propyl-
amine, monoethanolamine, diethylamine, tert-butylamine, piperidine, piperazine, morpholine, 2-methylpiperidine, or 4-methylmorpholine (0.005 mol in case of piperazine). The mixture was heated until substance dissolution. The obtained solutions were filtered and left at room temperature for 48 hours, evaporated. Compounds were (2.4, 2.6, 2.8, 2.10, 2.15, 2.16), green (2.7, 2.14), brown (2.5, 2.9, 2.12), and red (2.11, 2.13). For analytical purposes, the compounds were recrystallized i-propanol (2.4, 2.5, 2.7, 2.10, 2.12-2.16) and n-butanol (2.6, 2.11).

Structure of the synthesized salts of 2-((3-mercapto-5-methyl-4H-1,2,4-triazole-4-y)limino)methyl]benzoic acid was confirmed by elemental analysis (Table 1), 1H NMR spectroscopy, and LC-MS (Table 2). LC-MS chromatograms demonstrate the presence of individual peaks corresponding to the synthesized compounds (Table 2).
Discussion

The elemental analysis confirmed the composition of the synthesized compounds (Table 1). ¹H NMR data indicated that theoretical structures are in agreement with the experimental results. ¹H NMR spectrum of potassium 2-((3-mercaptop-5-methyl-1H-1,2,4-triazole-4-yl)imino)methylbenzoate (2.3) was characterized by a chemical shift in a strong field appearing as a triple-proton singlet of the methyl group attached to the ring of 1,2,4-triazole at 2.25 ppm. Protons of the phenyl substituent appear as two triplets and one doublet at 7.43 ppm, 7.76–7.86 ppm, and 8.23 ppm, while proton of imino group resonates as a single-proton singlet at 9.32 ppm.

Conclusions

Sixteen new compounds were obtained during the chemical synthesis, specifically, the salts of 2-((3-mercaptop-5-methyl-1H-1,2,4-triazole-4-yl)imino)methylbenzoic acid. Structures of the synthesized compounds were confirmed by a set of instrumental methods, including ¹H NMR spectroscopy, LC-MS, and elemental analysis. For the obtained salts the pharmacological researches are planned to be evaluated.
(antioxidant, antihypoxic, antimicrobial, cardio- and hepatoprotective actions).

Funding
The research was performed within the research work of Zaporizhzhia State Medical University "Synthesis, physical-chemical and biological properties of 3,4-disubstituted 3 (5)-thio-1,2,4-triazole with antioxidant, antihypoxic, antimicrobial, cardio- and hepatoprotective actions" № of state registration 0118U007143 (2018–2022).

Conflicts of interest: author has no conflict of interest to declare.

Information about author:
Hlazunova T. V., Assistant of the Department of Management and Pharmacy Economics, Medical and Pharmaceutical Law, Zaporizhzhia State Medical University, Ukraine.

Vідомості про автора:
Глазунова Т. В., асистент каф. управління і економіки фармації, медичного та фармацевтичного права, Запорізький державний медичний університет, Україна.

Сведения об авторе:
Глазунова Т. В., ассистент кафедры управления и экономики фармацевтических наук, Запорожский государственный медицинский университет, Украина.

References
[1] Shcherbak, M. A., Kaplaushenko, A. G., Maletsyko, N. N., & Sharyha, Ye. A. (2014). Issledovaniya po sozdaniyu lekarstvennoi formy na osnovie 3-(4-nitrofenil)-5-(isonitrofenil)-1,2,4-triazol-4-amine [The research on creation of the dosage form based on 3-(4-nitrophenyl)-5-(isonitrophenyl)-1,2,4-triazole-4-amine]. Zaporozh'e Medical Journal, 4(85), 82-85. [in Russian].

[2] Kaplaushenko, A. H. (2013). Doslidzhennia zii stvorennia novocho onyhinonalno vtychzhennano ikantskoho zasobu na osnovi 1,2,4-triazol [The research of creating a new original domestic drug based on 1,2,4-triazole]. Naukovy zhurnal MOZ Ukrainy, 2(3), 115-121. [in Ukrainian].

[5] Ilnatova, T. V. Kaplaushenko, A. H., & Frolova, Yu. S. (2019). Stvorennya, doslidzhennia fizychnykh i khimichnykh vlastyvostei 2-((4-R-5-fenetyl-4H-1,2,4-triazol-3-yl)thio)acetic acids and their salts series by the method of Raman spectroscopy in organic chemistry [The research of creation and study of physical and chemical properties of 2-((4-R-5-fenetyl-4H-1,2,4-triazol-3-yl)thio)acetic acids and their salts series by the method of Raman spectroscopy in organic chemistry]. Odeskyi medychnyi zhurnal, 42(19), 37-40. [in Ukrainian].

[6] Shcherbyna, R. O., Panasenko, O. I., & Knish, Ye. H. (2016). Vyvchennia antyoksidantnoi aktvnosti solii 2-((4-R-3-(morfolinometylenyl)-4H-1,2,4-triazol-5-yl)atsetatnoi aktyvnosti pokhidnykh 1,2,4-triаzolу on seeds of sunflower simple [The study of antioxidant activity of salts 2-((4-R-3-(morfolinometylenyl)-4H-1,2,4-triazol-5-yl)atsetatnoi aktyvnosti pokhidnykh 1,2,4-triаzolу on seeds of sunflower simple]. Ukrainian Biopharmaceutical Journal, 1(42), 37-40. [in Ukrainian].

[12] Hulina, Yu. S., & Kaplaushenko, A. H. (2015). Synthe and fizyko-khimichni vlastyvosti 2-(5-[1H-tetrazol-1-ilmetyl]-4-R-1,2,4-triazol-3-yl)atsetatnykh kyslot [Synthesis and physical-chemical properties of 2-(5-[1H-tetrazol-1-ylmethyl]-4-R-1,2,4-triazol-3-yl)atsetatnykh kyslot]. Current Issues in Pharmacy and Medicine: Science and Practice, 3(19), 57-60. [in Ukrainian]. https://doi.org/10.14739/2409-2932.2015.3.52680

[15] Varnysykk, B. O., Knish, Ye. H., Parchenko, V. V., Panasenko, O. I., & Kaplaushenko, A. H. (2015). Vyvchennia zakonomirnosti utrymu vannia potentsiinykh likarskykh substantsii riadu 1,2,4-triazol-5-tiolu [The study of retention regularities for the potential drug substances of 1,2,4-triazol-5-thiol and their salts series by the method of HPLC/DAD-MS]. Zhurnal orhanichnoi ta farmatsevtychnoi khimi, 13(4), 68-75. [in Ukrainian].

ISSN 2306-8094